Software Development Team
Structures
(3C05/D22)

Computer

Unit 7: SW Development Team Structures

+ Objective:

— To discuss the different roles involved in large-scale software
engineering projects

— To show the qualifications and capabilities for team members
adopting these roles

— To review how teams are composed and projects are staffed.

Computer

Creating an OO Team

+ Software Development Learning Curve
— 1 month to learn language syntax
— 6 to 9 months to become proficient in new paradigm

— 12 to 18 months to become moderately proficient in modelling and
methodology

Computer

How to Kick-Start an New-Paradigm Project

* Mentoring!

+ Seed project with experienced people

« External/internal consultants at key stages
— Planning
— Project start up

— Regular design and
code reviews

— Post-project review

Case Study

» A company took a group of non OO programmers and
over a period of one month trained them in C++ and an
OO methodology. They then launched them straight into a
full-blown OO Project. Naturally the Project failed badly.
How did this happen? Management did not understand
that object technology is different to conventional software
development.

The OO Project Team According to
Booch!

Core - Software production
Supplemental - Supports core
Peripheral - at project edges

Peripheral

Supplementa

But where does Booch
put Project Managers?

Computer

Sub-teams

Architecture
Team
! - Aim for fluid sub-teams:
Analysis Roles blur in an OO projec
Team
I
Design
Team Task Force
I (Tiger Team)
Implementation Deployment
Team [Team

Computer

Abstractionists

To simplify our discussion, we introduce the role of
Abstractionist

Abstractionists embrace the following USDP roles:

— Use-Case Specifier

— Use-Case Engineer

— System Analyst

— System Integrator

These USDP roles are often done by the same person
anyway!

Computer

Core Team: Structure

Architect

Abstractionist| Abstractionist|

\ \
Component
Engineers

Computer

What about testing?

+ Testers can be a member of an Abstractionists team (just
like a Component Engineer)
» Testers may belong to a separate Test Team

This often depends on company policy!

Computer

Staffing

O Architects 10%

O Abstractionists
30%

O Component
Engineers 50%

O Supplemental
10%

Computer

Staffing Profiles

Component Engineers

Abstractionists

Numbers

Architect

1
4

Time

Computer

Core Team: Roles

* Architect
— System architecture and vision
* Abstractionist
— Micro-architectures
— One Abstractionist per class package
+ Component Engineer (programmer)
— Implementing abstractions

Computer

Architect: Responsibilities

» System Architecture

» Assess technical risks

+ Define content of successive iterations
— Help in planning

+ Consultancy

* Marketing
— Future product definition

Computer

Architect: Skills

» Experience
— Problem domain
— Software engineering
* Vision
* Leadership
+ Communication
* Proactive and goal-oriented
* Risk taker

Computer

Abstractionist: Responsibilities

Identify classes, packages, subsystems, mechanisms,
frameworks

Define interfaces

Direct implementation and (possibly) testing

Advise and support the Architect

Mentor and lead Component Engineers

Computer

Abstractionist: Skills

» Experience

— Must know how to find abstractions
— Strong programming skills

* Leadership

— Ability to manage a small team of developers

» Communication

— Able to express complex ideas simply

* Proactive and goal-oriented

Computer

Component Engineer: Responsibilities

» Implement scenarios, mechanisms and classes

» Tactical class design

+ Class-level testing

» Advise abstractionist about tactical risk

+ Participate in Task Forces and code walkthroughs

Computer

Component Engineer: Skills

» Good coding skills and likes to code!
» Perhaps has specialisations e.g. GUI

+ Familiar with OOA/OOD principles

Computer

Myth of the replaceable programmer

+ Some Project Managers view programmers as the “lowest
form of life”. They are just replaceable parts

+ This ignores the fact that a good programmer may be up to
10 times more productive than a bad programmer

+ Good programmers are very valuable and need to be
encouraged and rewarded

Computer

OO as an Amplifier

+ Object orientation acts like an amplifier - it makes the best
programmers much better, and the worse programmers
much worse!

» The same is true for Abstractionists !

Computer

The Supplemental Team

+ Project Manager + Documentor
« Integrator + Toolsmith
* Quality Assurance Engineer « System Administrator
« Librarian
Computer

Project Manager: Responsibilities

» Oversee the Project’s deliverables

» Establish and drive schedules

+ Staffing

* Work break down

» Budgeting

+ Co-ordinate with patrons and user community

Computer

Project Manager: Skills

» Experience
— Leadership
— Proactive
— Goal oriented
— Communication
» Pragmatic
* Risk-aversive
+ Politically aware

Computer

The Peripheral Team

» Patron
— Champions the Project
* Product Manager
— Manages a product line
— Manages marketing, training, support
* End user
— Client of the Project
» Technical support

Computer

Key Points

» The key to successful operation of the USDP or any other
OO lifecycle is to organise into small flexible teams

» There should be a “chain of responsibility” and continuity of
ownership for artefacts from requirements down to code

» A good policy is to give responsibility for whole chains to
individual teams

Computer

