
Object Constraint Language

The Fallible Software Engineer.
Computers generally do not make mistakes. The CPU on the desks of millions the world
over is perfectly capable of executing billions of instructions without making a single
error. Why then do computers crash? We already know the short answer - software bugs,
which are introduced by the programmer into the software unwittingly and/or
accidentally during its construction. Bugs are what result when the programmers intent
differs from the actual implementation as defined by the code; the code always has the
final say on the existence of bugs.

A programmers job, in the loosest sense, has always been to translate an "idea" into
executable code. The idea can be described by the programmer (or software architect, or
software engineer) in many ways: by using diagrams, by using the written word, even by
using the spoken word, along with para-linguistic features such as hand gestures.
However, none of these forms is of any use to the computer, and so the idea must be
eventually be translated into a language understood by both programmer and computer; a
programming language.

It is common knowledge that the adoption of progressively higher level programming
languages over the last few decades has reaped huge rewards in terms of the quality of
software and the productivity of programmers. Until recently however, the translation of
the "idea" to the programming language of choice has remained a largely manual process,
undertaken by fallible software engineers.

The solution to this problem which is being championed by the Object Management
Group (OMG) is the Model Driven Architecture(MDA). If the software "idea" can be
expressed with enough precision then the process of translation from idea to
programming language can be automated. This automation will eliminate errors which
would have previously been introduced at this stage by the programmer. The difficulty
lies in expressing the "idea" with enough precision for this automation to become
feasible.

Software Modelling and the UML
The process of specifying a software "idea" is more commonly known as modelling.
Software modelling has been a research area in computer science for many years but has
only recently begun to enter into common usage with the standardisation of the Unified
Modelling Language (UML1.1) in 1997. The OMG defines UML as the standard
modelling language for object oriented modelling, including non-software (i.e. business
process) modelling. The core of UML1.1 focuses on "diagrammatic elements and giving
meaning to those elements through English text" [Warmer 2003, pg. xx] . Diagrams and
the written word are favoured by humans for expressing ideas. However the OMG
recognizes the limitations of UML diagrams in constructing a model with sufficient

precision for the automatic translation goal of the MDA. The precision of UML is
provided by the use of a formal language, the Object Constraint Language.

Formal Languages
Programming languages used in computer science are always formal languages.
Mathematicians have constructed and used formal languages for many years to talk
precisely about a given area of mathematics an example being the lambda calculus. A
formal language is by definition "a mode of expression more careful and accurate, or
more mannered than everyday speech." [Wikipedia, Formal Languages]

In addition to programming languages, formal languages have been used in the field of
computer science to describe programs in a more abstract sense than the nitty-gritty of an
ordered list of instructions. For example, the language Z was developed at Oxford
University in the 1970s to specify and formulate proofs about computer programs. Later
after the advent of object oriented techniques and programming languages the language
Syntropy was created which was partly built on a subset of Z. [Wikipedia, Z notation]

Formal languages provide something that our natural language doesn't, a single
interpretation of a given statement. The English language for example, though
enormously expressive, is inherently ambiguous. For example, the phrase "I saw the
flowers walking down the garden path." either describes a pleasant stroll, or a horror B-
movie. Formal languages exist for their lack of ambiguity.

The Object Constraint Language is the formal language for modelling with the UML. It
provides the unambiguous expression that UML diagrams alone cannot provide.

A formal language such as Z or Syntropy can be used for precise modelling of software.
Traditionally formal languages have used a mathematical notation which often leads to
the language being inaccessible to non-mathematicians "Experience with formal or
mathematical notations have led to the following conclusion: The people who can use the
notation can express things precisely and unambiguously, but very few people can really
understand such a notation" [Warmer 2003, pg. 17]

OCL was designed from the beginning to be accessible to a wider audience than previous
modelling notations. It contains no unfamiliar mathematical symbols. It is also easy to
learn; "OCL was very carefully designed to be both formal and simple: its syntax is very
straightforward and can be picked up in a few minutes by anybody reasonably familiar
with modelling or programming concepts” [Warmer 2003. pg. Xix]. These facets have
helped OCL already gain a much wider acceptance in industry than previous formal
modelling languages.

Constraints
OCL is used to augment the power of the UML. In the initial UML1.1 specification, the
OCL was defined as an extension to the language. Additionally, this original OCL

specification focused on one particular usage of the OCL, that of constraints. Briefly “a
constraint is defined as a restriction on one or more values of (part of) an object-oriented
model or system” [Warmer 2003, pg.xxii].
The OCL2.0 specification extends the use of OCL to more generalized expressions; “In
UML 2, the understanding is that far more additional information should be included in a
model than constraints alone. Defining queries, referencing values, or stating conditions
and business rules in a model are all accomplished by writing expressions.” [Warmer
2003, pg.3].

Alternative syntaxes
As we have mentioned earlier, the syntax of OCL contains no unfamiliar mathematical
symbols, making the language accessible to a wide audience. OCL goes even further
than this to accommodate different usage patterns; the OCL2.0 specification allows users
to define their own syntax. For instance, a particular usage domain may lend itself to an
alternative syntax, one example of this is the Business Modeling syntax [Warmer 2003,
Appendix C]. The new syntax must be able to be mapped onto the standard syntax. For
example Klasse Objecten provide a tool to transform standard OCL syntax to BM syntax,
known as Octupus [Klasse Objecten].

Models Only
“Precise specifications are necessary when those specifications are meant to be realized
by a computer, since most computers do not tolerate ambiguity” [Clark 1998, pg.2]. The
ability to create models that communicate their intent unambiguously is key problem on
the path to the realization of the MDA. The OCL is the OMGs solution to this problem.
With the OCL UML models can be defined to a level of precision necessary for
automatic translation Such tools have already emerged, the Klasse Objecten website lists
the current offerings [Klasse Objecten].

The OMG defines five maturity levels related to the use of models within software
development. Level five, the uppermost level, is described as 'models only'; the goal of
software development from a model, with no user intervention in actual the construction
of executable code. “This level has not been realized yet anywhere in the world. This is
future technology, unfortunately.” [Warmer 2003, pg.12]. The OCL2.0 is another step on
the path towards this goal.

References
Clark, Tony and Warmer, Jos, 1998, Object Modeling with the OCL – The Rationale behind the Object
Constraint Language, Springer, Berlin.

Warmer, Jos and Kleppe, Anneke, 2003, The Object Constraint Language Second Edition – Getting Your
Models Ready For MDA, Addison-Wesley, Boston.

Wikipedia, Formal Language, http://en.wikipedia.org/wiki/Formal_language
Wikipedia, Z notation, http://en.wikipedia.org/wiki/Z_notation
Klasse Objecten, www.klasse.nl/ocl

