Model Checking

B. Feigin
March 23, 2005

1 Introduction

We start with a motivational observation that the predominant strategies for
software system verification — unit and regression testing, coverage analysis
and so on — are largely heuristic in nature. Though fertile when the defect
density is high, they often fail to uncover the more intricate bugs [1]. The
system requirements themselves are usually expressed in natural language
resulting in ambiguities [9].

Traditional techniques are not sufficient to ensure that the zero-defect
requirement encountered in environments where impact of failure is dispro-
portionately high (such as health- and safety-critical systems and financial
applications) is satisfied. As the old maxim goes, there’s always one more

bug!.

Formal methods — namely deductive verification and model checking —
built on rigorous mathematical foundations aim to provide rock-solid cor-
rectness guarantees called for in such circumstances. Application of these
methods, by necessity, also promotes strictness and precision in specification
of system requirements.

Deductive verification (or theorem proving) entails axiomatization of the
system domain using detailed knowledge about the system and establishment
of inference (deduction) rules [6]. One then manually constructs correctness
proofs using these axioms and rules — a process requiring much skill and
time.

! Affectionately known as Lubarsky’s Law of Cybernetic Entomology

In contrast, model checking, which is based on exhaustive exploration
of possible the states of the system, aims to be fully automatic, requiring
little operator intervention. Additionally, in order to use a model checker,
the operator need not possess detailed knowledge of and extensive experience
in mathematical logic that are necessary to perform deductive verification.
These benefits lower the entry barrier for adoption of model checking as a
standard quality assurance technique.

In the rest of the essay, we go on to take a more detailed look at model
checking (as it applies to software systems), the one major limitation prevent-
ing more extensive application of the method and some possible remedies,
and finish with a look at some of the currently available software tools.

2 Model Checking

In short, model checking is a collection of techniques for automated formal
verification of finite-state concurrent systems. We start off with a bird’s
eye view of the process (Figure 1) and proceed to refine it in the following
paragraphs.

Model OK
Model Checker
Specification NO, and here's why...

Figure 1: Model checking — a high-level view

Given a model (an abstraction of the system) and a specification of the
properties that are required to hold (relating to absence of deadlocks, live-
ness, invariants etc.), the model checker verifies whether the former satisfies
the latter. A counterexample is produced upon discovery of a violation.

The model is defined using some suitable formalism, for example a pro-
cess algebra (see Figure 5). Rather than manually constructing the model, it
may be more appropriate to derive it from other descriptions of the system.
For example, at design stage, UML diagrams may be annotated with such
information [4] or it may be extracted from source [8] or executable [5] code
post-implementation.

Abstraction is usually necessary to make verification tractable (see Sec-
tion 4 below). For example, when analysing a communications protocol for
deadlocks, the actual data passed around is of no significance [8]. It is impor-
tant, however, that relevant details are not thrown away — if the behaviour
of the model does not correspond closely to the actual system, the results of
analysis are worthless.

For reasons which will become clear later, model checkers cope best with
systems whose state information is compact and can be easily manipulated.
This naturally favours control-oriented systems which do not perform in-
tricate transformations on complex data structures [6]. Such systems are
known as reactive systems and are characterised by continuous interaction
with their environment. Examples include hardware controllers and various
security and communications protocols.

We now proceed to formalise the concepts of model and specification.

3 Transition Systems and Temporal Logic

We reason about reactive systems in terms of their state. It is therefore con-
venient to introduce the notion of a state transition system to describe the
evolution of such a system.

A Kripke transition system [3] T over a set of atomic propositions AP is
a four-tuple (S, Act, —, I) where S is the set of states, Act the set of actions
(e.g. program statements), —C S x Act x S is the transition relation and
I:S — 2%P an interpretation (i.e. I(s) for some s € S is the set of proposi-
tions which are true in s, e.g. a = 1)

The structure is readily visualised as a graph (see Figure 2). T can be
rooted with an initial state sq € S and unfolded into an infinite execution tree.

We express assertions about system behaviour using temporal logics which
extend propositional logic with the notion of time without explicitly intro-
ducing it as a quantitative measure. Formulae are constructed from atomic
propositions, boolean connectives and temporal operators. We differentiate
between linear- and branching-time logics.

Propositional Linear-Time Logic (PLTL) is the basic linear-time logic.
Important operators in PLTL include: X ¢ (“next ¢”), ¢ U ¢ (“p until

3

Figure 2: Transition system and top of execution tree.

V"), F ¢ (“eventually ¢”) and G ¢ (“always ¢”). Formulae are interpreted
over linear paths [2]. We are in general interested in verifying that all paths
leading from the starting state(s) satisfy the formula.

As Figure 3 shows, the semantics are intuitive.

NEXT(P) UNTIL(P, Q) EVENTUALLY (P) ALWAYS(P)

7

P

o
T e Y e T e T e— T

-
-
-
-

Figure 3: Interpretation of PLTL operators.
PLTL is used to express correctness properties of the system.

Computational Tree Logic (CTL) is a kind of branching-time logic. It
gives selectivity by introducing existential and universal quantifiers — E

4

and A respectively [3]. These alternate with PLTL operators. CTL formulae
are interpreted at the states [2]: the PLTL properties must hold on some or
all paths emerging from the state (as determined by the preceding quantifier).

THERE-EXISTS(L) FOR-ALL(L)

Figure 4: Quantification over paths in CTL formulae.

CTL allows one to express possibility properties [2].

As examples of temporal logic formulae, consider: AG —(owns;Aownss) [2]
(where owns; signifies ownership of a resource by process) which asserts the
necessity for mutual exclusion on access to that resource and AG (EF Restart) [1]
which means that from any state it should be possible to reach the Restart
state.

Given a transition system T and a temporal logic formula ¢, the job of
the model checker is to decide whether T |= .

There are two main categories of model checking algorithms: local (usu-
ally used by PLTL model checkers) and global (used with CTL) [2].

We note that more “user-friendly” descriptions (such as specialised mod-
elling languages) are used in practice in preference to these low-level for-
malisms. As a real-world example of the type of input model checkers take,
consider Figure 5 which shows a description of the Dining Philosophers prob-
lem in terms of the Finite State Processes (FSP) process algebra.

The Labelled Transition System Analyser [7] — a model checking tool
which accepts FSP as input — diligently reports that the philosophers of
Figure 5 may well starve to death, by providing a sequence of transitions
leading to a deadlock.

/** Concurrency: State Models and Java Programs
* Jeff Magee and Jeff Kramer

*

x/

1
2
3
4
5
6 PHIL = (sitdown->right.get->left.get

7 ->eat->left.put->right.put

8 ->arise->PHIL).

9

10 FORK = (get -> put -> FORK).

11

12 | IDINERS(N=5)=

13 forall [i:0..N-1]

14 (phil[i]:PHIL

15 | [{phil[i].left,phil[((i-1)+N)%N].right}: :FORK).
16

17 menu RUN = {phil[O0..4].{sitdown,eat}}

Figure 5: Naively Dining Philosophers in FSP process algebra [7].

4 The State Explosion Problem

Applicability of model checkers based on explicit state enumeration is seri-
ously limited by the state explosion problem — the number of states in most
non-trivial systems is astronomical, in fact, exponential in the number of
parallel components.

Also, we noted above that transition systems are not usually constructed
directly, but instead some higher level language is used. Now, [2] notes that
the size of a transition system corresponding to such a description will be
exponential in the length of the description.

We survey some of the proposed techniques to help alleviate the problem:

Partial Order Reduction This optimisation is based on the observation
that for loosely interacting processes, it is not necessary to examine
every possible interleaving of concurrent actions, provided the said ac-
tions commute. By eliminating redundancies, the size of the state space
is reduced.

Abstraction The technique is based on eliminating any details which do not

affect the particular property being checked. It involves constructing
an abstraction relation such that when the abstract model satisfies a
property, it is provably the case that the actual system also does [2].

Symmetry Reduction This technique pulls in the machinery of group the-
ory in order to obtain a reduced system by exploiting symmetries within
it. For example, in cases where system behaviour remains unaffected
when some data values are permuted [2].

4.1 Symbolic Model Checking

A radically different approach is symbolic model checking. Here the states of
the system are represented implicitly, hence the size of the state space ceases
to be a limiting factor [6].

Binary Decision Diagrams (BDDs), an efficient representation of boolean
formulae, are used. The temporal formulae can be checked directly on the
BDDs avoiding explicit state construction altogether [6].

5 Sample Applications

Model checking techniques have been applied in a variety of hardware and
software projects. We give a couple of the more interesting examples of the
latter category.

Fluke IPC [8] The SPIN model checker was used to verify the the highly
concurrent Interprocess Communications subsystem of the Fluke mi-
crokernel. The PROMELA model was derived directly from C source
code for some parts and built from ground up for others (in order to
take advantage of built-in PROMELA functionality). Two serious bugs
were identified.

DEOS Avionics Operating System [5] The Java PathFinder model checker
was used to check for a subtle error which has been previously discov-
ered during manual code analysis. For this purpose, the relevant part
of the system (a slice, in fact) was translated from C++ to Java. It is
noted in particular that using partial order reductions helped to find
the error much quicker.

6 Software

Currently available model checking packages include:

SPIN 2 One of the biggest successes in model checker construction. SPIN
takes in a system model expressed in PROMELA (PROcess MEta LAn-
guage) and a PLTL specification. Uses so-called on-the-fly techniques
in order to avoid preconstruction of states.

Java PathFinder (JPF) ® Works directly on Java bytecode rather than a
specialised modelling language. Geared towards deadlock detection and
does not allow PLTL checking. JPF is an explicit-state model checker
and as such uses various methods such as symmetry and partial-order
reductions to tame the state space.

LTSA ? The Labelled Transition System Analyser can be used to verify
concurrent systems described using the FPS process algebra. Both
system and required properties are represented as finite state machines.

7 Conclusions

We have given a brief overview of model checking. As a different breed of
quality assurance tool, model checking facilitates reaching levels of reliability
and integrity unachievable with conventional methods.

In conclusion, we observe that the biggest rewards are reaped by combin-
ing model checking with state space reduction techniques described above as
well as static analysis methods such as program slicing [?].

References

[1] E. M. Clarke, O. Grumbler, D. A. Peled. Model Checking. MIT Press,
1999

[2] S. Merz. Model Checking: A Tutorial Overview. Lecture Notes in Com-
puter Science 2067, pp. 3-38, 2001

Zhttp://www.spinroot.com
Shttp://ase.arc.nasa.gov/visser/jpf/
4http://www.doc.ic.ac.uk/~ jnm/book/ltsa-v2/index.HTML

8

3]

[10]

M. Miller-Olm, D. Schmidt, B. Steffen. Model-Checking: A Tutorial
Introduction. Lecture Notes in Computer Science 1694, pp. 330-354,
1999

N. Kaveh. Model Checking Distributed Objects. Lecture Notes in Com-
puter Science 1999, pp. 116—128, 2001

W. Visser, K. Havelund, G. Brat, S. Park, F. Lerda. Model Checking
Programs. Automated Software Engineering Journal 10(2), pp. 203232,
2003

P. Wolper. An Introduction to Model Checking.
http://www.montefiore.ulg.ac.be/ pw/papers/papers.html,
1995

J. Magee, J. Kramer. Web page of Concurrency: State Models € Java
Programs. http://www.doc.ic.ac.uk/~ jnm/book/

P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi,
G. Back. Formal Methods: A Practical Tool for OS Implementors. In
Proc. of the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI ’97), pp. 44-56, Las Vegas, NV, June 1997
http://www.cs.utah.edu/flux/papers/index.html

J. Wu, G. Liu, V. Lane. cCIS 841 Web Book
- Fall 1999, Chapter 4 Formal Verification.
http://www.cis.ksu.edu/ hankley/d841/Fa99/chap4.html

G. K. Palshikar. An introduction to model checking.
http://www.embedded.com/showArticle. jhtml7articleID=17603352,
Embedded.com, 2004

