
1

1

Distributed Software Architecture
Using Middleware

Mitul Patel

2

Overview

• Distributed Systems

• Middleware
– What is it?
– Why do we need it?

• Types of Middleware

• Example

• Summary

3

Distributed Systems

• Components of a system
are not always held on
the same host

• Hosts are connected via
a network

• Appears to users as a
single integrated
computing facility

Networknetwork

host1 hostn

host2 hostn-1

2

4

Distributed Systems

• Positives
– Increased resource sharing
– Better integration of existing system components
– Increased performance & reliability
– Cheaper than a centralised system (sometimes)

• Negatives
– Difficult construction
– Complicated communication through a network
– Security issues
– Differing platforms and languages in use

5

Middleware

• Middleware is a term that refers to a set of software services that
reside between the application and the OS and aims to facilitate the
development of distributed applications by abstracting over the
complexity and heterogeneity of the underlying environment.

6

Middleware

• Provides high-level primitives that simplify distributed system construction

• Common environment across platforms and languages

• Consistent Application Programming Interface (API)

• Supports interoperability across OS, hardware, networks,
and programming languages

• An abstraction for application designers/programmers
– Resolves heterogeneity
– Enables expert design
– Simplified interface
– Provides transparency
– Reusable

• Concentrates development on requirements and not underlying network
protocols, concurrency issues, etc

3

7

Middleware Requirements

• Quality of Service (QoS)
• Scalability
• Load balancing
• Reliability (fault-tolerance)
• Predictability
• Transparency
• Group Requests
• Security
• Marshalling

8

Middleware

• However

– Limits interaction with the operating system
– Potential performance hit
– Can sometimes add to complexity and cost

 May not be appropriate in all circumstances

9

Types of Middleware

• Transactional Middleware
– Supports transactions

• Message-Oriented Middleware
– Supports message exchange

• Procedural Middleware
– Supports remote procedure calls (RPCs)

• Object/Component Middleware
– OO version of procedural middleware

4

10

Transactional Middleware

• Supports transactions involving components on distributed
relational databases

• Assumes servers use 2 phase commit protocol (2PC)
– Helps keep the system in a consistent state
– Ensures operations occur on either all or no hosts
– Reliable

• Communication can be synchronous or asynchronous

• An unnecessary overhead exists if transactions are not needed

• Programmers have to deal with marshalling

• e.g. IBM’s Customer Information Control System (CICS)

11

Message-Orientated Middleware

• Supports messaging & notifications between distributed components

• Point-to-Multipoint support
– Great for publisher-subscriber based systems
– And for group communication

• Communication via asynchronous message exchange

• Good fault tolerance using persistent message queues

• Programmers have to deal with marshalling

• Limited support for scalability & heterogeneity

• e.g. Sun’s Java Message Service (JMS)

12

Procedural Middleware

• Supports remote procedure calls
– Developed by Sun Microsystems during the 80’s

• Uses Interface Definition Language (IDL)

• Synchronous communication
– Between one client and one server only

• Middleware deals with marshalling and un-marshalling

• Bindings for many different programming languages

• Not very fault tolerant or scaleable

• No single standard

• e.g. Sun Remote Procedure Call (RPC)

5

13

Object/Component Middleware

• OO evolution of procedural middleware
– Adds inheritance, references, exceptions etc

• Uses an Object Request Broker (ORB)

• Communication is synchronous or asynchronous
– Supports multicasting

• Integrates most of the capabilities of transactional middleware,
message_oriented middleware and procedural middleware

• Very powerful, but scalability is still rather limited

• e.g. Common Object Request Broker Architecture (CORBA) (open standard)
 Distributed Common Object Model (DCOM) (proprietary)

14

Example Middleware

• Common Object Request Broker Architecture (CORBA), is a
distributed object architecture that allows objects to interoperate across
networks regardless of the language in which they were written or the
platform on which they are deployed

• CORBA allows developers to write applications that are more flexible
and future-proof, to wrap legacy systems, and to code in the language
they know best

• The Object Request Broker (ORB) is the middleware that handles the
communication details between the objects. The CORBA 2.0 standard,
adopted in December of 1994, defines true interoperability by
specifying how ORBs from different vendors can communicate using a
common protocol

• In the CORBA model, a client can request a service without knowing
what servers are attached to the network. The various ORBs receive
the requests, forward them to the appropriate servers, and then hand
the results back to the client.

15

6

16

Summary

• Distributed systems are great but there are drawbacks
– Complex construction
– Security issues
– etc

• Middleware hides many of the complications that arise with
building & maintaining distributed systems
– Resolves heterogeneity
– Provides transparency
– etc

 Middleware is great!

17

Further Reading

• Book:
IT Architectures and Middleware:
Strategies for Building Large, Integrated Systems
– Chris Britton
– ISBN: 0321246942

• IEEE Computer Society:
– http://dsonline.computer.org/middleware

• Papers:
Software Engineering and Middleware: A Roadmap
– Wolfgang Emmerich
– http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/ICSE2000/SOTAR

Distributed Component Technologies & their Software Engineering Implications
– Wolfgang Emmerich
– http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/ICSE2002/SOA/

