
3C05-CW2 Florence Lin
March 2005

1 of 8

Enterprise Application Integration (EAI) Techniques

The development of technology over the years has led to most systems within an
organisation existing in heterogeneous environments. That is to say, different applications
were developed with varying languages, operate on different hardware and available on
numerous platforms. The problems lay in the fact that when implementing systems,
decisions on the technology employed differed from department to department and also
had some dependence on the latest trends. What emerges is that these systems serve
only the departmental needs. Information and process sharing across an organisation is
not accommodated for. These types of systems are known as ‘stovepipes’.

Each of these stovepipe systems held independent data; it was recognised that customer
information and the sharing of this information across departments was extremely
valuable to an enterprise. Allowing the disparate systems to interoperate became
increasingly important and necessary. As organisations grew, so too did the desire to
integrate key systems with clients and vendors.

Research has shown that during software development, a third of the time is dedicated to
problem of creating interfaces and points of integration for existing applications and data-
stores. Clearly, the idea and pursuit of application integration is not something new. What
is new are the approach and the ideas that Enterprise Application Integration (EAI)
encompasses and the techniques it uses. In order for it to be a success and a realistic
solution, applying EAI requires involvement of the entire enterprise: business processes,
applications, data, standards and platforms.

Business Process
The focus here is on combining tasks, procedures, required input and output information
and the tools needed at each stage of a process. It is imperative that an enterprise
identifies all processes that contribute to the exchange of data within an organisation. This
allows organizations to streamline operations, reduce costs and improve responsiveness to
customer demands3.

Application
The aim here is on taking one application’s data and/or functionality and merging them
with that of another application. This can be realised in a number of ways. For example,
business-to-business integration, web integration, or building websites that are capable of
interacting with numerous systems within the business.

Data and Standards
This addresses the need to have a global standard by which data can be shared and
distributed across an enterprise’s network of systems. Without this format, the two
aforementioned integrations would not be viable. To achieve this, all data and its location
must be specified, recorded, and a metadata model built.

Platform
This provides a secure and reliable means for a corporation’s heterogeneous systems to
communicate and transfer data from one application to another without running into
problems.

3C05-CW2 Florence Lin
March 2005

2 of 8

There are two types of logical integration architecture that EAI employs: Direct Point-to-
point and middleware-based integration.

Point-to-point Integration
When dealing with very few applications, this method is certainly adequate. Point-to-point
integration is usually pursued because of its ease and speed of implementation. It must be
stressed though, that the efficiency of this method deteriorates as you try and integrate
more systems. So, although to begin with you only have a few systems, consideration
must go into the future; scalability is a huge concern. You may begin with integrating two
systems, but integrating more could lead you to something that resembles Figure 1.

Figure 1. The later stages of integration1

In theory, you could end up in a situation like that of Figure 2. The number of integration
points is double the number of systems. This will be problematic because of the tight
coupling between the systems. Alterations in one system could have adverse effects on
another. Each additional application thus becomes more difficult to maintain and integrate.

To alleviate the issue of high amounts of integration points and thus relieving the coupling
problem, the use of middleware has been introduced whereby the number of integration
points will be equal to the number of systems.

3C05-CW2 Florence Lin
March 2005

3 of 8

Figure 2. Number of point-to-point connections 1

Middleware
An intermediate layer (as can be seen in Figure 3) provides generic interfaces through
which the integrated systems are able to communicate. Middleware performs tasks such
as routing and passing data. Each of the interfaces define a business process provided by
an application1. Adding and replacing applications will not affect another application.

Figure 3. Middleware-based Integration1

In comparison to the point-to-point approach, middleware-based integration can easily
support a larger amount of applications and does not require as much maintenance.
Despite these benefits, it must be noted that there is an added initial complexity of setting
up the middleware and converting existing applications to use the middleware APIs 1.

3C05-CW2 Florence Lin
March 2005

4 of 8

Having selected the integration architecture, a decision must be made regarding the
method of integration. Organisations must appreciate both business processes and data.
They must then select which of those require integration. This can take on several
dimensions; in EAI there are four common types of integration:

- Data-level integration
- Application-level integration
- Method-level integration
- User interface (UI)-level integration

Data-level
At this level, backend data stores are integrated to enable the movement of data between
them. Put simply, information can be extracted from one database, processed as needed,
and then updating it in another database. In an EAI enterprise, this could mean drawing
data from as many as hundreds of databases and thousands of tables. For this reason,
keeping the integrated application's data intact is a problem. For example, one table might
have dependencies to others, and the integrated application may be the sole enforcer of
those dependencies.

Data-level integration can be push- or pull-based. Push-based integration is when one
application makes SQL queries on another application's database; data is pushed into
another application's database. In contrast, pull-based integration is used when an
application requires passive notification of changes within another application's data1.

Cost benefits of data-level integration give it its advantage over other approaches. This is
because on the whole, the application is not altered; code is not changed and so the
expense of changing, testing, and deploying the application is not incurred2.

Data-level integration should be used when the application up for integration does not
provide any APIs or client interfaces. This is typically represented as the only option with
custom applications lacking application APIs.

Application-level
This refers to making use of interfaces contained within custom or packaged applications
such as SAP, Peoplesoft or Baan. These interfaces are leveraged to provide access to
business processes and information. This approach is probably the best way to integrate
applications as it allows you to invoke business logic to preserve data integrity. Developers
are able to bundle many applications together so that business logic and information can
be shared. This approach is more widely used and is preferred since it is transparent to
the integrated application and the application's data integrity is preserved.

Method-level
In effect, this is a more complicated form of application-level integration and is used less
frequently. Common operations on multiple applications are aggregated into a single front
application. For example, the method for updating a customer record can be accessed
from numerous applications without having to rewrite each method within the respective
application. Since all applications that interact with the integrated applications do so via

3C05-CW2 Florence Lin
March 2005

5 of 8

this front application, method-level integration requires the integrated applications to
support a RPC (remote procedure call) or distributed component technology.

The disadvantage lies in the fact that changing the integrated application API will break
the front application components and the applications that rely on them. Given this then, it
is usually more appropriate to opt for application-level integration using middleware.

User interface (UI)-level integration
Although it is more primitive, this approach is necessary and useful. Applications can be
bundled together and their user interfaces used as common point of integration – this
approach is known as proxy-based user-interface level integration. A second type which is
scripting-based exists.

There are those who regard this approach as unstable, and although not preferred, user
interface-level integration should be used on occasions when you cannot easily or directly
access the database, or when your business logic is embedded in the user interface. For
example, mainframes that do not provide data stores or public APIs. Many client/server
applications embed the business logic in the client. Accessing and maintaining data
integrity in instances like these can only be achieved by user interface-level integration.

The Right Method?
The task of choosing the right method of integration is predominantly an exercise in
constraint-based modelling1. It will vary depending on the business, and its current
technological situation. The general guideline is to analyse each system and identify all
potential interfaces into that application. Should the application not have any API; the
backend data store represents the only option. In other cases, APIs and a CORBA
infrastructure may exist so application-level integration can be employed. Having chosen
the integration method, the next step is to “identify a common integration XML Schema in
order to encompass all integration objects and their associated attributes” 1.

The EAI Process
The following steps builds upon the integration methods I have just mentioned. It is a
high-level process which can be applied to an EAI project to help steer its course and
ensure that right, informed decisions are made during the course of the project and hence
secure its success.

Step 1: Understanding the Enterprise and Problem Domain
This in-effect is like requirements gathering. It involves speaking to numerous people
within the business, specifically heads of departments, in order to gain an understanding
of what is and is not important. Obtaining quality information at this stage is imperative as
it will lead to and impacts steps 2 and 3.

Step 2: Making Sense of the Data
Even though most EAI projects integrate at the data-level, but even if it was at a different
level, you still need have an understanding of the database. This is done by identifying
data, cataloguing the data and then creating enterprise metadata model.

3C05-CW2 Florence Lin
March 2005

6 of 8

Step 3: Making Sense of the Processes
In order to determine how to approach the enterprise business model, a view of enterprise
at process/method-level is undertaken. Business processes need to be understood and
documented. This involves looking at how they relate to each other AND to the metadata
model built in step 2.

Step 4: Identifying Application Interfaces
In addition to seeking common methods and data to integrate, interfaces also need to be
addressed. The reason for this is that interfaces will differ from application to application
so you should validate all assumptions you have about them and build a repository of
information about what is available.

Step 5: Identifying the Business Events
This looks at WHAT invokes an event, WHAT takes place following this event and any
other events that may be invoked. So for example, a customer signing up for credit on an
online store represents event. You can capture this event and make something else
happen e.g. automatically running a credit check.

Step 6: Identifying Schema & Content Transformation
This stage addresses how the schema and content is transformed. The need for this stems
from the fact that data in one system will not make sense to another system so it needs to
be reformatted accordingly. Achieving this assures maintenance of consistent application
semantics across all systems within an enterprise.

Step 7: Mapping Information Movement
This involves looking at what data element or interface information is moving from. So for
example, the customer id from the sales database needs to move to the credit-reporting
database. The movement of this information needs to be mapped so at all times, we know
where it is physically located and security present.

Step 8: Applying Technology
It is very unlikely that the final solution will come from a single vendor. Many technologies
exist and so you will most probably have a mixture of products. It is important to
understand available solutions and then match these to criteria. This is a difficult process
and requires a pilot project to prove the technology will work. Thus the the time taken to
select the technology could be as long as the EAI project itself.

Step 9: Testing
Though it is expensive and time consuming testing is essential. It will ensure that the final
solution will scale and can handle the rigors of day to day usage. For proper testing
planning is a must. This is because most EAI projects will be implemented in an enterprise
that have business-critical systems so very rarely can these systems be taken offline for
testing.

Step 10: Considering Performance
In order to build performance into a solution, it must be designed and tested for before
going live. This is because once a solution has been deployed, you cannot proceed with
fixing performance issues. An example of the kind of test you would do is testing your

3C05-CW2 Florence Lin
March 2005

7 of 8

solution under a different amount of users, say 100, 500, and then 10,000 users. This will
help you evaluate if your solution is capable of coping under these different conditions.

Step 11: Defining the Value
Addressed here, is the question of what the business value of integrating the systems is
and the overall value of the EAI solution. The general method employed to determine this
value is by evaluating dollars saved. There are two types. Hard dollar looks at things like
reduction of error rates or if orders are able to be processed more quickly. Soft dollar is
less tangible for example, customer satisfaction or whether there has been increased
productivity over time. This is in general terms and is likely to differ from business to
business.

Step 12: Creating Maintenance Procedures
Finally, once you have reached a solution, it is not just a matter of deploying it and leaving
it be. Maintenance issues overtime need to be addressed. Who will solve problems or
monitor performance? A good idea is to document activities that need to occur. It is
important to remember that the EAI solution is the heart of enterprise. Responsible for
moving information between business critical systems, it is because of this very nature
that makes it a vulnerable point of failure which could be the demise of an enterprise. So
at this stage disaster recovery issues should also be introduced and resolved.

Conclusion
Five years ago, it was expected that the EAI services market will become the most
important and fastest- growing IT sector. In accordance with IDC research, "worldwide
revenues in this market will jump from $5 billion in 2000 to nearly $21 billion in 2005” 5.
Now this was only a prediction and taken into consideration were issues that may inhibit
the growth of EAI. These include, "cost of services, human issues regarding EAI
engagements, and business-to-business integration challenges."

Despite its techniques and specified integration techniques, without any support from key
players in the industry, the popularization and realization EAI would not materialize.
Luckily, market leaders include like BEA Systems which support EAI’s development, and
large system integration firms include IBM Global Services exist.

One example of the success of EAI is TIGRA6, which integrated different financial front-
office trading systems with middle- and back-office applications. This was done through
the use of middleware and integrating at the data-level.

We have looked at where the need for EAI stems from, and the issues that need to be
addressed. Techniques have been discussed as how to achieve this, and there are
examples of when it has been applied successfully. There is strong support from the IT
industry and I believe the importance of EAI will continue its growth not only in the IT
industry but more significantly, its impact and necessity will be realized by that of the
business sectors which employ the use of IT.

3C05-CW2 Florence Lin
March 2005

8 of 8

1. Abraham Kang, EAI Using J2EE, 2002
2. David S.Linthicum, Enterprise Application Integration, Addison-Wesley, 2000
3. Andre Yee, "Demystifying Business Process Integration." EaiQ.
4. EAI Overview, IT Toolbox, 2002
5. IDC, "The Enterprise Application Integration Market Simmers with Robust Growth
Expectations." February 28, 2001.
6. TIGRA: An Architectural Style for Enterprise Application Integration” W. Emmerich, E.
Ellmer and H. Fieglein. Proc. of 23rd Int. Conference on Software Engineering

