
1

Program Slicing

Stephan Nawracki

Contents

• Introduction
– What is program slicing?
– Conditions for a program slice
– Why is it useful?

• Variants of program slicing
– Overview
– Examples

• Implementation of program slicing
– Introducing control flow graphs
– Program slicing as a data flow problem

• Program slicing software
– Introduction and short description

• References

Introduction

What is program slicing?
Conditions for a program slice

Why is it useful?

2

What is program slicing?

• Analysis technique introduced by Mark
Weiser in his PHD thesis (1979)
– Idea derived when he was observing

experienced programmers debugging a
program

– Result: Every experienced programmer
uses slicing to debug a program

Experiment with 21 programmers

0
5

10
15
20

25
30

35
40

1 2 3 4 5

o

f
re

co
g

n
it

io
n

s

Adjacent Code

Slice

Non Adjacent Code

• Slicing reduces programs to statements relevant for partial
computation
– Irrelevant statements are deleted

• A slice S includes all program statements affecting variables V at
position n in Program P
– Eg the slicing criteria S(a, 10) is a slice including all statements

affecting the value of a in line 10

What is program slicing? Cont’d

• Program slicing describes a mechanism which allows the automatic generation of a slice
• All statements affecting the variables mentioned in the slicing criterion becomes a part of

the slice
• Variables V at statements s can be affected by statements because:

– Statements define whether s is executed at all (control dependence)
– Statements define a variable that is used by s (data dependence)

slicing

Source Program Sliced Program

Conditions for a program slice

• A slice S(V,n) is derived from a Program P by deleting
statements from P

• The slice must be syntactically correct in terms of the
programming language used in P

• The values for variables V received from the slice at
statement s have to be the same as the values for V at
statement s in program P

• Weiser:
“First, the slice must have been obtained from the original
program by statement deletion. Second, the behaviour of
the slice must correspond to the behaviour of the original
program as observed through the window of the slicing
criterion”

3

Why is it useful?

• Program slicing is useful in many different stages of the
software development lifecycle e.g.
– Debugging:

– Slicing visualizes control and data dependencies
– It highlights statements influencing the slice

– Testing:
– Tests may be decomposed and test-work gets faster and more

efficient
– Software quality assurance

– Safety critical code can be isolated and functions can be
implemented redundant and in functional diversity manner

– Maintenance, …

Variants of program slicing

Overview
Examples

Overview

• Many different variants of program slicing exist e.g.
1. Static slicing
2. Dynamic slicing
3. Backward slicing
4. Forward slicing
5. Condition or quasi static slicing
6. Chopping
7. Interface slicing

• Also many different tools, however
– Most program slicing tools are written for C but there are also

some for C++, COBOL, FORTRAN and Java
– Most of these have problems with dynamic binding, inheritance,

polymorphism and performance (see chapter program slicing
software)

4

Overview Cont’d

• Static slicing
– Slices derived from the source code

for all possible input values
– No assumptions about input values.
– May lead to relatively big slices
– Contains all statements that may

affect a variable for every possible
execution

• Dynamic slicing
– Uses information derived from a

particular execution of a program
– Execution is monitored and slices

are computed with respect to
program history

– Relatively small slices
– Contains all statements that actually

affect the value of a variable

• Conditional or quasi static slicing
– acts as a bridge between the two extremes of static and dynamic slicing

• Backward slicing
– Contains the statements of the program P which may have some effect

in the slicing criterion S(V,n)

• Forward slicing
– Contains all those statements of P which are affected by S(V,n)

Example Backward slicing

Pass = 0; //There is a bug in the program. Average isn’t calculated correctly
Fail = 0;
Count = 0;

while (!eof()) {
TotalMarks=0;
scanf("%d",Marks);
if (Marks >= 40)

Pass = Pass + 1;
if (Marks < 40)

Fail = Fail + 1;
Count = Count + 1;
TotalMarks = TotalMarks+Marks ;

}
printf("Out of %d, %d passed and %d failed\n",Count,Pass,Fail) ;
average = TotalMarks/Count;
printf("The average was %d\n",average) ; // This is the point of interest
PassRate = Pass/Count*100 ;
printf("This is a pass rate of %d\n",PassRate) ;

Example Forward slicing

Original:

x = 1; /* what happens when this line is changed */
y = 3;
p = x + y ;
z = y -2 ;
if (p==0)
r++ ;

Forward slice:

/* Change to first line will affect */
p = x + y ;
if (p==0)
r++ ;

5

Implementation of program slicing

Introducing control flow graphs
Program slicing as a data flow problem

Introducing control flow graphs

• Control flow graphs are used for
data flow analysis

• A control flow graph consists of
– A set of nodes
– A set of directed edges
– A unique entry node START
– A unique exit node STOP

Program slicing as a data flow problem

• Weiser used a control flow graph as an intermediate representation for
his slicing algorithm
– This control flow graph is used for data flow analysis

• A data flow describes change/flow of values of variables from the
point of definition to the point they are used

• The relevant parts for slice S are calculated in four steps:

1. Initialize the relevant sets of all nodes to the empty set.
2. Insert all variables of V into relevant(n).
3. For n's immediate predecessor m, compute relevant(m) as:

 relevant(m) := relevant(n) - def(m) (* exclude all variables that are defined atm *)

 if relevant(n) _ def(m) # {} then (* if m defines a variable that is relevant atn *)
 relevant(m) := relevant(m) _ ref(m) (* include the variables that are referenced atm *)
 Include m into the slice
End

4. Work backwards in the control flow graph, repeating step 3 for m's immediate
 predecessors until the entry node is reached or the relevant set is empty.

6

Example

• This is a very simple version of the algorithm and has to be
extended in order to deal with
– Procedure calls
– Classes
– Inheritance
– …

Program slicing software

Introduction and short description

Unravel

• By John Lyle, Dolores Wallace, James Graham, Keith
Gallagher, Joseph Poole, David Binkley

• Runs on Sun Sparc
• Slices programs in ANSI C
• Has some restrictions (e.g. no goto statements)

– Just backward slice at the moment

• Performs work in reasonable time

Homepage: http://hissa.nist.gov/unravel/

7

Wisconsin program slicer

• Was used for C but no longer
maintained
– However commercial tool

Codesurfer
(http://www.grammatech.com/produ
cts/codesurfer/index.html) is derived
from the Wisconsin program slicer

• Developed and tested on Sun
Sparc

• Forward/backward-slicing, chopping,
building and manipulating control
flow graphs and program
dependency graphs

• Homepage:
• http://www.cs.wisc.edu/wpis/slicing_

tool/

Bandera

• Open source tool for Java Programs
• Written in Java thus running on all “Java platforms”

http://bandera.projects.cis.ksu.edu/

DEMONSTRATION !

References

• Kepler, Johannes: “Program Slicing for Object Oriented Programming
Languages”

• Weiser, Mark: “Program Slicing”, IEEE Transactions on Software Engineering
10(4):352-357. 1984

• Bandera Manual: „Model-checking Java Programs“

• http://www.brunel.ac.uk/~csstmmh2/exe1.html

• http://bandera.projects.cis.ksu.edu

• http://hissa.nist.gov/unravel/

• http://www.grammatech.com/products/codesurfer/index.html

• http://www.cs.wisc.edu/wpis/slicing_tool/

