
3C05 - Advanced Software Engineering Thursday, April 29, 2004

1

Distributed Software Architecture
Using Middleware

Avtar Raikmo

2

Overview

• Middleware
– What is middleware?
– Why do we need middleware?
– Types of middleware

• Distributed Software Architecture
– Business Object Model

• Distributed Middleware
– Middleware requirements
– Middleware usage
– Example

• Conclusion

3

Middleware



3C05 - Advanced Software Engineering Thursday, April 29, 2004

2

4

• ‘Glue’ ISO/OSI Layer

What Is Middleware?

Application

Middleware
OS

Hardware

• Aid Development
– Easier
– Faster
– Cheaper

5

Why Use Middleware?

• The Good

¸ Unified interface
¸ Simplified interface
¸ Heterogeneity

¸ Lightweight
¸ Transparency

¸ Expert design
¸ Reuse

• The Bad

˚ Limited interaction with OS

˚ Potential performance hit

˚ Adapted usage

6

Types Of Middleware 1

• Procedural Middleware
– Synchronous communication
– Restricted Client-Server model

– Exactly one client and one server

e.g. Sun Remote Procedure Call (RPC)

• Object & Component Middleware
– Asynchronous communication support
– Client-Server model

– Extension of Procedural Middleware model

e.g. Common Object Request Broker Architecture (CORBA)



3C05 - Advanced Software Engineering Thursday, April 29, 2004

3

7

Types Of Middleware 2

• Transactional Middleware
– Asynchronous communication support
– Client-Server model

– Distributed transactions, using 2PC

e.g. IBM Customer Information Control System (CICS)

• Message-Orientated Middleware
– Asynchronous message exchange
– Point-to-Multipoint support

– Use of topics and subscription

e.g. Sun Java Message Service (JMS)

8

Distributed Software Architecture

9

Distributed Software Architecture

• Component Based Architecture

Business Object Model

Display Tier
e.g. Browser

Presentation Tier
e.g. Servlets

Business Object
e.g. EJB

Persistence Tier
e.g. Database

HTTP

RMI / IIOP

JDBC



3C05 - Advanced Software Engineering Thursday, April 29, 2004

4

10

Component Architecture 1

• Display Tier
– Render display

– Colours
– Font size

– Requires a structured format
e.g. XML

– File
– Screen

• Requirement
– Heterogenic output

– Reuse of structured format for different output

– Decouple data model from view
e.g. Web page

11

Component Architecture 2

• Presentation Tier
– Display logic

– Layout design
– Generate view from data
– Mark up presentation view

e.g. Servlets
– Dynamic content

• Requirement
– Automate views

– View can be made from data, on the fly
– Rule based

– Non-business logic
e.g. Shopping basket

12

Component Architecture 3

• Business Object
– Business logic

– Validate data requests
– Limit connectivity to the persistent storage

e.g. EJB
– Searching for an item

• Requirement
– Data processing

– Process non-persistent storage requests
– Load balancing

e.g. Stock search, credit card validation, gather data from multiple databases



3C05 - Advanced Software Engineering Thursday, April 29, 2004

5

13

Component Architecture 4

• Persistence Tier
– Data store

– Possibly many
– Physical or logical

e.g. Database
– Stock details

• Requirement
– Connectivity

– Concurrent access
– Consistency
– Fault tolerance

e.g. Stock details

14

Distributed Middleware

15

Distributed Middleware Requirements

• Scalability
– Fault Tolerance

– Disconnections
– Off-Line support
– Execution semantics

– Robustness
– Replication

• Reliability
– Integrity

– Reconciliation

• Context Awareness
– Resources

– Bandwidth
– Power
– Storage

– Service discovery
– QoS

• Flexibility
– Name resolution

– Component identification
– Location transparency



3C05 - Advanced Software Engineering Thursday, April 29, 2004

6

16

Distributed Middleware 1

• Procedural Middleware
– Reliability

– ‘At Most Once’ execution
– Procedure is executed 0 or 1 times
– Returns an exception if unable to execute

– Communication
– Remote to Local name mapping required on server

– Scalability
– Limited fault tolerance, no replication
– Lightweight
– Limited

– Interoperability
– Network Data Representation standardisation
– OS included
– Programming language dependent

17

Distributed Middleware 2

• Object & Component Middleware
– Reliability

– ‘At Most Once’ & ‘Exactly Once’
– Limited transactional support
– Throws an exception if unable to execute

– Communication
– Object reference may be local or remote

– Scalability
– Limited fault tolerance, limited replication
– Load balancing
– Limited

– Interoperability
– Naming service, ‘White Pages’
– Limited programming language independence

18

Distributed Middleware 3

• Transactional Middleware
– Reliability

– ‘Exactly Once’
– Transactional support, ‘ACID’

– Communication
– Transparent interaction
– Asynchronous support

– Scalability
– Fault tolerance, automatic recovery and replication
– Load balancing

– Interoperability
– Standard 2PC protocol
– Programming language independence



3C05 - Advanced Software Engineering Thursday, April 29, 2004

7

19

Distributed Middleware 4

• Message-Oriented Middleware
– Reliability

– ‘At Least Once’
– The message is received 1 or more times

– Communication
– Limited transparent interaction
– Asynchronous

– Scalability
– Fault tolerance, message queue storage
– Point-to-Multipoint support

– Interoperability
– Naming & Service discovery
– Limited programming language independence

20

• Java Message Service (JMS)

Note: (A) and (B) may be different

Distributed Middleware Example

Application (B)Application (A)

JMS
OS (A)

Hardware (A)

JMS
OS (B)

Hardware (B)

21

Conclusion

• Present Middleware
– Heavy usage in industry

e.g. CORBA, EJB, JDBC

– Simple heterogeneity
– Middleware level

– Interoperability
e.g. Java, .NET

• Future Middleware
– Heavy usage in commerce

e.g. Java Micro Edition

– Advanced heterogeneity
– OS/Hardware level

– Enhanced connectivity
e.g. Bluetooth, WaveLAN



3C05 - Advanced Software Engineering Thursday, April 29, 2004

8

22

Summary

• Distributed Software
– Complex
– Modular design
– Issues

– Availability
– Integrity
– Heterogeneity
– Reliability
– Scalability
– Security

etc…

• Middleware
– Preferable
– Extendable architecture
– Provides

– Simplified development
– Heterogeneity
– Reusable layer

– Tackles issues
– Transparently
– Limited security

23

Questions

?


