
Chris Davis 3C05 Advanced Software Engineering 03/05/2003

Distributed Objects and Components

Introduction
This essay will identify the differences between objects and components and what
it means for a component to be distributed. It will also examine the Java 2
Enterprise Edition architecture and associated Enterprise Java Bean technologies.

Objects
A number of definitions of objects have been suggested in recent years. Booch
defines an object as: “an object has state, behaviour, and identity; the structure
and behaviour of similar objects are defined in their common class”, in addition to
this Rumbaugh adds that an object is “a concept, abstraction or thing with crisp
boundaries and meaning for the problem at hand”. 1 The features often associated
with objects are summarised below.

• An object has:
o State
o Operations
o Attributes

• Provides an abstraction
• Represents something real
• Is self-contained
• Is clearly defined
• Helps to solve a problem

Components
A component can be thought of as a collection of objects that provide a set of
services to other systems. They have many features in common with objects, but
are less fine-grained. Examples of components include code that provides
graphing facilities; provide network communication services; or perhaps a search
and browsing service around a set of tables in a database.

Stal defines a component as “A self-contained entity that exports functionality to
its environment and may also import functionality from its environment using
well-defined and open interfaces”. This definition highlights a number of
differences from objects:

• Components are self-contained
• Provide services to other systems
• Use stated interfaces to interact with other systems

Components may be run either locally or in a distributed fashion. Many examples
of locally run components exist and are commonly used to provide specific
functionality to external programs. The Object Linking and Embedding (OLE)
architecture was one of the first component frameworks in common use, and this
enabled the use of specialised functionality from one program to be used in
another program. An example of this is the use of Microsoft Excel spreadsheets in
Microsoft Word.2

1 [CETUS] Objects and Components (online reference)
2 [CETUS] Objects and Components (online reference)

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

Distributed Components
Whereas objects and locally distributed components are located on the computer
utilising them, distributed components are typically located on machines other
than those making calls to them. 3

Advantages of Distributed Components
The distribution of components has a number of advantages:

Load sharing
The use of distributed components facilitates interaction across machine
boundaries, and this allows the system to harness the resources of multiple
computers. Consequently, a number of machines may be involved in processing
requests, potentially eliminating a performance bottleneck.

Increased availability
Distribution of components may result in increased system availability, with
multiple instances of each object residing on machines in the network. If the
instances are sharing load then the loss of one host will result in the load being
distributed through the remaining machines. Replicated hosts may also be
configured in a hot-swap or cold-swap arrangement. Each of these has different
advantages and disadvantages.

Heterogeneity
Different hardware and software platforms store data in different ways. The most
common difference is that some use a big-endian representation and others a
little-endian representation. Distributed systems over come this problem by
utilising a middleware layer that resolves the heterogeneity issues. The
middleware enables distributed components to exist on multiple different
platforms, and to still interact with one another.

Code reuse
It is intended that distributed components be constructed to supports reuse. This
means that the components should be carefully designed so that they are useable
in different contexts and systems. In practise this can be hard to achieve.

Disadvantages
In addition to these advantages, there are also some disadvantages with
distributed components:

Multiple points of failure
By distributing the components of a system across multiple machines, the
susceptibility of the system to failure can be increased. If all components of a
distributed system are required to be available at any time network, machine
failure can reduce the reliability of the system. With careful design these
weaknesses can be reduced.

Complexity
Building a distributed system is a complex task. It involves the construction of a
number of interacting elements and often these communicate asynchronously –
making exhaustive testing almost impossible. The size of most distributed
component systems means that multiple developers are involved in their
construction, again this increases the complexity of the process, as the

3 [EMM2000b] W. Emmerich, Engineering Distributed Objects

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

developers must keep up to date with all changes to interfaces and behaviours in
the system.

Middleware
Middleware is the layer of software that mediates between an application and the
network. It is responsible for managing the interaction between components
distributed over heterogeneous computing platforms.

Types of Middleware
There are four categories of middleware technologies identified by Wolfgang
Emmerich. They each exhibit different properties, and these classifications are
examined below. 4

Transaction-Oriented
Transactional middleware enables distributed components to ensure that an
atomic operation either occurs completely or not at all. This is achieved by the
use of a two-phase commit protocol. A transactional middleware does create
some overhead, so if transactions are not required for an operation this is an
unnecessary additional cost. Transaction-oriented middleware is commonly used
in distributed databases.

Message-Oriented
This form of middleware provides message transmission, receipt and queuing
services to distributed components. Messages are used to transmit service
requests, updates and responses to requests. Messages are held in queues until
they are de-queued by the receiving component and this ensures messages are
not lost when a host is busy or unavailable.

Message-oriented middleware provides asynchronous communication between
components - reducing the coupling between components. This leads to systems
that are more scalable, with less tightly coupled components.

Procedural
The most common form of procedure-based middleware is Sun Microsystems’
Remote Procedure Call middleware technology. This enables components on one
computer to invoke a procedure or method call on a component located on
another computer. The invocation and any associated parameters are marshalled
into messages and these are sent from one machine to the other. The invocation
semantics with a procedural middleware are commonly synchronous – with the
invoker being blocked until a response is received.

Object-Oriented
Object-oriented middleware is based on the object-oriented programming
paradigm, and extends the functionality of Procedural middleware to provide the
additional facilities required for use in an object-oriented environment.

There are a number of different object-oriented middleware technologies widely
used in industry. Two of these are each examined briefly below, and a detailed
study of the Java 2 Enterprise Edition technology follows.

4 [EMM2000] W. Emmerich, Software Engineering and Middleware: A Roadmap

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

CORBA
The Common Object Request Broker Architecture (CORBA) was defined by the
Object Management Group and was intended to provide a standardized platform
for which to construct distributed components. A CORBA application consists of a
number of objects that store data and export functionality to other objects. There
may be one or more instances of a particular object within the application, and
each object type has an interface defined with the OMG Interface Definition
Language (IDL). Whenever an invocation is performed, the appropriate method
call from the object’s interface is called and the arguments for the method are
marshalled.

CORBA is language independent and has bindings to Java, C, C++ and many
other common programming languages.5

DCOM
Microsoft developed the Component Object Model (COM) to support locally
situated component, and this was later extended to support distributed
invocations – resulting in the Distributed Component Object Model (DCOM).
Microsoft implemented DCOM only for the Windows platform, implementations for
other platforms have been produced independently, but have not proven popular.
Consequently, DCOM is only commonly utilised within the Windows environment.
There are several language bindings for DCOM – Microsoft Visual C++, Visual
J++ and Visual Basic amongst others. As with CORBA, an IDL (in this case
Microsoft IDL) is used to define the exported interfaces.

J2EE and EJB
The Java 2 Enterprise Edition provides a multiplatform distributed component
platform. It consists of a set of services and protocols that are used at each level
of a multi-tier distributed system. It provides services for all tiers (see Figure 1
below) of the J2EE distributed component architecture.

J2EE n-tier architecture

Figure 1 - The J2EE n-tier architecture6

5 [OMG] Object Management Group; CORBA Basics
6 taken from [SUN] Sun Microsystems; J2EE Tutorial

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

The client-tier provides an interface for the user to interact with the system. This
may be in one of several forms: it could be a web browser (such as Netscape
Navigator or Internet Explorer), a Java applet or Java-based client program.

The web-tier consists of Java Server Pages or servlets, which process and
respond to requests from the client tier. The components of the web-tier obtain
data and process information using the business-tier.

The business-tier is implemented in Enterprise JavaBeans (EJBs) and is commonly
referred to as the Business Logic of the application. The EJBs are executed in a
bean container – an application that controls the execution of JavaBeans and
provides services such as transaction management, database connection pooling,
security and authorisation facilities, remote machine connectivity, component
persistence and replication. Further detail on the types of beans and bean
containers is given later.

Behind the business-tier is the EIS-tier, which is comprised of the Enterprise
Information Systems (EIS). This category contains; databases, transaction
processing systems, resource-planning systems and other large-scale information
systems and these will often be accessed by many different n-tier systems. For
example, a bank may have one J2EE application for its traders to use, a system
for external clients to trade, and another for reporting and monitoring functions,
all utilising the same transaction processing system.

Enterprise JavaBeans
Enterprise JavaBeans (EJBs) are components that are used to provide the
business logic for a J2EE application. They consist of a number of Java classes
that have been packaged appropriately and are deployed to an EJB container that
creates and manages the components. EJBs communicate using either Java
Remote Method Invocation, or with Java Message Queues. There are a number of
different types of EJBs, and these are examined below.

Session beans
A session bean is used to represent the state of a single interactive
communication session between a client and the business-tier of the server.
Session beans are transient; when a session is completed the associated session
bean is discarded. If an application server fails, any session beans currently
available to it are lost, as they are not stored in stable storage. There are two
categories of session beans:

Stateful session beans hold the conversational state and one of these is required
for each of the sessions that are currently open.

Stateless session beans hold no state (outside of calls) and receive all of their
required input from the client-tier. These beans may be pooled and reused,
thereby reducing the overheads of many clients accessing one server.

Entity beans
Entity beans provide an in-memory copy of long-term data. They are persistent,
and are saved to stable storage to ensure they are preserved across machine
crashes. Many clients may access an individual entity bean, and can find them by
searching for the desired bean with the appropriate primary key.

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

An example of an entity bean is one that represents the historic prices of a stock.
The data could be loaded from a database, and this entity bean could then be
cached in memory and referenced by other entity bean.

Message-driven beans
Message beans were added to the Enterprise JavaBeans architecture later than
session and entity beans. Originally, EJBs communicated using Java Remote
Method Invocation; however, with the advent of the Java Message Service (JMS),
message-driven beans were introduced. This form of bean is an asynchronous
JMS message consumer, and to avoid tying up servers it uses a non-blocking
primitive.

Bean Containers
As briefly mentioned above, EJB containers are responsible for the management
of Enterprise JavaBeans. Before execution, an EJB component must be assembled
into a J2EE application and deployed into its container. Each J2EE component has
a configuration file associated with it (called a deployment descriptor), and this
specifies the container settings for each of the EJBs and for the application as a
whole.

The Bean container architecture is shown in Figure 2 below.

Figure 2 - EJB Containers7

Facilities provided
The container manages many aspects of the execution of each application. The
configuration file enables components to customise the support services provided
by the J2EE application server. These include transaction management, database
connection management, security, remote host connectivity and EJB persistence.8

Advantages
The use of application servers such as EJB containers greatly simplifies the
process of development and deployment of distributed components. It enables

7 taken from [SUN] Sun Microsystems; J2EE Tutorial
8 [SUN] Sun Microsystems; J2EE Tutorial

Chris Davis 3C05 Advanced Software Engineering 03/05/2003

developers to concentrate on the functional and business-oriented aspects of the
components they are developing, rather than having to consider concurrency
controls, transactional behaviours, persistence, database connectivity and other
complex issues. 9

The EJB architecture extends the concept of reusability and takes it to a practical
level, where whole components may be reused, rather than the piecemeal reuse
of individual classes that occurs in class based object-oriented development.

Summary
This essay has identified many advantages of component-based development,
with particular focus on a distributed environment. An overview of the CORBA and
DCOM middleware architectures has been presented and the structure of the J2EE
architecture, in particular Enterprise JavaBeans, has been examined in more
detail. The importance of Bean Containers, and the range of facilities they
provided, has also been looked at.

References

[EMM2000] Wolfgang Emmerich; Software Engineering and Middleware: A

Roadmap; ACM Special Interest Group on Software Engineering,
2000

[EMM2000b] Wolfgang Emmerich; Engineering Distributed Objects; Wiley &

Sons, 2000

[OMG] Object Management Group; CORBA Basics

http://www.omg.org/gettingstarted/corbafaq.htm

[SUN] The J2EE Tutorial
 http://java.sun.com/j2ee/tutorial/

[CETUS] Objects and Components
 http://www.cetus-links.org

9 [SUN] Sun Microsystems; J2EE Tutorial

