
1

Pattern-Oriented Software

Architecture

by

Roman Punskyy.

Who am I ?

� I am a 3rd year undegraduate

� on MSci Computer Science degree

� You can contact me by email

� R.Punskyy@cs.ucl.ac.uk

Outline

� What is a Pattern?

� Characteristics

� Descriptions

� Categories

� MVC pattern

What is a Pattern ?

� "A pattern for software architecture
describes a particular recurring design problem
that arises in specific design contexts and
presents a well-proven generic scheme for its
solution. The solution scheme is specified by
describing its constituent components, their
responsibilities and relationships, and the ways
in which they collaborate." [Buschmann].

Characteristics of Patterns (1)

� A pattern describes a solution to a recurring
problem that arises in specific design situations.

� Patterns are not invented; they are distilled from
practical experience.

� Patterns describe a group of components (e.g.,
classes or objects), how the components
interact, and the responsibilities of each
component. That is, they are higher level
abstractions than classes or objects.

Characteristics of Patterns (2)

� Patterns provide a vocabulary for communication
among designers. The choice of a name for a
pattern is very important.

� Patterns help document the architectural vision
of a design. If the vision is clearly understood, it
will less likely be violated when the system is
modified.

� Patterns are building blocks for the construction
of more complex designs.

2

Characteristics of Patterns (3)

� Patterns provide a conceptual skeleton for a
solution to a design problem and, hence,
encourage the construction of software with
well-defined properties.

� Patterns help designers manage the complexity
of the software. When a recurring pattern is
identified, the corresponding general solution
can be implemented productively to provide a
reliable software system.

Description of Patterns

� Context

� The Context section describes the situation in which
the design problem arises.

� Problem

� The Problem section describes the problem that arises
repeatedly in the context.

� Solution

� The Solution section describes a proven solution to
the problem.

Categories of Patterns (1)

� Architectural Patterns

� An architectural pattern expresses a
fundamental structural organization schema
for software systems. It provides a set of
predefined subsystems, specifies their
responsibilities, and includes rules and
guidelines for organizing the relationships
between them." [Buschmann]

Categories of Patterns (2)

� Design Patterns

� "A design pattern provides a scheme for
refining the subsystems or components of a
software system, or the relationships between
them. It describes a commonly-recurring
structure of communicating components that
solves a general design problem within a
particular context." [Buschmann]

Categories of Patterns (3)

� Idioms

� "An idiom is a low-level pattern specific to a
programming language. An idiom describes
how to implement particular aspects of
components or the relationships between
them using the features of the given
language." [Buschmann]

The Model-View-Controller Pattern

3

MVC Pattern

� Model : The core of the application. This
maintains the state and data that the application
represents. When significant changes occur in
the model, it updates all of its views

� Controller : The user interface presented to the
user to manipulate the application.

� View : The user interface which displays
information about the model to the user. Any
object that needs information about the model

needs to be a registered view with the model.

How it all works in Java?

� A Model consists of one or more classes that
extend the class java.util.Observable. This
superclass will provide the register/notify
infrastructure needed to support a set of views.

� The views are built of AWT or SWING
components. However, views must implement
the java.util.Observer interface.

� the controllers are the listeners in the Java event
structure.

Steps …

� write a Model that extends
java.util.Observable
� class accessors to get informtion about its
current state

� mutators to update the state

� create one or more views

� Each view must implement the
java.util.Observer interface and hence
implement the update method

Steps …

� The Object in the second parameter will
be used to receive additional information if

passed.

� Eg.

interface Observer {

void update (Observable t, Object o);

}

UML Diagram

initialize(Model)

makeController

activate

display

Update

myModel

myController

View

initialize(Model,View)

handleEvent

update

myModel

myView

Controller

attach(Observer)

detach(Observer)

notify

getData

service

coreData

setOfObservers

Model

update

Observer

call update

attach
getData

create

manipulate
display

attach
call service

MVC advantages (1)
� Clarity of design

� by glancing at the model's public method list, it
should be easy to understand how to control the
model's behaviour.

� When designing the application, this trait makes the
entire program easier to implement and maintain.

� Efficient modularity
� allows any of the components to be swapped in and

out as the user or programmer desires - even the
model!

� Changes to one aspect of the program aren't coupled
to other aspects, eliminating many nasty debugging
situations

� Development of the various components can progress
in parallel.

4

MVC advantages (2)

� Multiple views
� the application can display the state of the
model in a variety of ways, and create/design
them in a scalable, modular way.

� Views are using the same data, they just use
the information differently.

� Ease of growth
� controllers and views can grow as the model
grows.

MVC advantages (3)

� Distributable

� with a couple of proxies one can easily
distribute any MVC application by only altering
the startup method of the application.

� Powerful user interfaces

� using the model's API, the user interface can
combine the method calls when presenting
commands to the user.

Summary

� Patterns helps in developing software with
known properties

� Help find concise solutions to design
problems

� Can be implemented in any programming
language

� Already widely used in application and
business domain.

References

� Pattern-Oriented Software Architecture by
Buschmann, Meunier, Rohnert,

Sommerlad, Stal [John Willey & Sons]

� J. Bergin, Pace University

� http://csis.pace.edu/

� H. C. Cunningham, Mississippi University

� http://www.cs.olemiss.edu/

