Pattern-Oriented Software
Architecture

by
Roman Punskyy.

Whoam11?

= I am a 3" year undegraduate
= on MSci Computer Science degree

= You can contact me by email
» R.Punskyy@cs.ucl.ac.uk

Outline

m What is a Pattern?
» Characteristics

m Descriptions

» Categories

= MVC pattern

What is a Pattern ?

n "A pattern for software architecture
describes a particular recurring design problem
that arises in specific design contexts and
presents a well-proven generic scheme for its
solution. The solution scheme is specified by
describing its constituent components, their
responsibilities and relationships, and the ways
in which they collaborate." [Buschmann].

Characteristics of Patterns (1)

Characteristics of Patterns (2)

= A pattern describes a solution to a recurring
problem that arises in specific design situations.

» Patterns are not invented; they are distilled from
practical experience.

m Patterns describe a group of components (e.g.,
classes or objects), how the components
interact, and the responsibilities of each
component. That is, they are higher level
abstractions than classes or objects.

» Patterns provide a vocabulary for communication
among designers. The choice of a name for a
pattern is very important.

» Patterns help document the architectural vision
of a design. If the vision is clearly understood, it
will less likely be violated when the system is
modified.

» Patterns are building blocks for the construction
of more complex designs.




Characteristics of Patterns (3)

Description of Patterns

» Patterns provide a conceptual skeleton for a
solution to a design problem and, hence,
encourage the construction of software with
well-defined properties.

» Patterns help designers manage the complexity
of the software. When a recurring pattern is
identified, the corresponding general solution
can be implemented productively to provide a
reliable software system.

= Context
m The Context section describes the situation in which
the design problem arises.
= Problem
m The Problem section describes the problem that arises
repeatedly in the context.
= Solution
m The Solution section describes a proven solution to
the problem.

Categories of Patterns (1)

Categories of Patterns (2)

= Architectural Patterns

» An architectural pattern expresses a
fundamental structural organization schema
for software systems. It provides a set of
predefined subsystems, specifies their
responsibilities, and includes rules and
guidelines for organizing the relationships
between them." [Buschmann]

m Design Patterns

n "A design pattern provides a scheme for
refining the subsystems or components of a
software system, or the relationships between
them. It describes a commonly-recurring
structure of communicating components that
solves a general design problem within a
particular context." [Buschmann]

Categories of Patterns (3)

The Model-View-Controller Pattern

= Idioms

» "An idiom is a low-level pattern specific to a
programming language. An idiom describes
how to implement particular aspects of
components or the relationships between
them using the features of the given
language." [Buschmann]

apdates anipulates

Problem Domain Application




MVC Pattern

= Model : The core of the application. This
maintains the state and data that the application
represents. When significant changes occur in
the model, it updates all of its views

= Controller : The user interface presented to the
user to manipulate the application.

= View : The user interface which displays
information about the model to the user. Any
object that needs information about the model
needs to be a registered view with the model.

How it all works in Java?

= A Model consists of one or more classes that
extend the class java.util.Observable. This
superclass will provide the register/notify
infrastructure needed to support a set of views.

= The views are built of AWT or SWING
components. However, views must implement
the java.util.Observer interface.

» the controllers are the listeners in the Java event
structure.

Steps ...

= write a Model that extends
java.util.Observable

m class accessors to get informtion about its
current state

= mutators to update the state
= Create one or more views

= Each view must implement the
java.util.Observer interface and hence
implement the update method

Steps ...

» The Object in the second parameter will
be used to receive additional information if
passed.

= EQ.
interface Observer {
void update (Observable t, Object 0);

MVC advantages (1)

Observer
Model

coreData I
setOfObservers View
attach(Observer) attach | mYModel
detach(Observer) getData | myController
notify initialize(Model)

makeController Controller
getData tivat
e Z-C ":a e create myModel

isplay TRERpLIEE | myView

Updats displ.

pdate P [Ninitialize(Model View)

attach] handleEvent
call service| ypdate

n Clarity of design

m by glancing at the model's public method list, it
should be easy to understand how to control the
model's behaviour.

» When designing the application, this trait makes the
entire program easier to implement and maintain.

n Efficient modularity

m allows any of the components to be swapped in and
out as the user or programmer desires - even the
model!

m Changes to one as?ect of the program aren't coupled
to other aspects, eliminating many nasty debugging
situations

u Development of the various components can progress
in parallel.




MVC advantages (2)

MVC advantages (3)

= Multiple views
= the application can display the state of the
model in a variety of ways, and create/design
them in a scalable, modular way.
= Views are using the same data, they just use
the information differently.
= Ease of growth

= controllers and views can grow as the model
grows.

= Distributable

= with a couple of proxies one can easily
distribute any MVC application by only altering
the startup method of the application.

= Powerful user interfaces

= using the model's API, the user interface can
combine the method calls when presenting
commands to the user.

Summary

References

m Patterns helps in developing software with
known properties

= Help find concise solutions to design
problems

= Can be implemented in any programming
language

» Already widely used in application and
business domain.

» Pattern-Oriented Software Architecture by
Buschmann, Meunier, Rohnert,
Sommerlad, Stal [John Willey & Sons]

= J. Bergin, Pace University
» http://csis.pace.edu/

m H. C. Cunningham, Mississippi University
= http://www.cs.olemiss.edu/




