
1

Software Performance Engineering
3C05 Advanced Software Engineering

04/11/2001
SEJPAL | PHULL

Agenda
• What is Software Performance Engineering (SPE)
• The goal of SPE
• When can SPE be used
• Why is SPE used
• Without SPE
• What it costs
• How SPE is Implemented & Measured
• Techniques for Improvement
• Future
• Summary

[hsejpal | tphull]@cs.ucl.ac.uk

2

What is Software Performance
Engineering?

• Firstly what is performance?
– “the degree to which a system or component

accomplishes its designated functions within given
constraints, such as speed, accuracy or memory
usage” [IEEE 610.12]

• Next, what is SPE
– Is the systematic process for planning and evaluating

a new system’s performance throughout the life cycle
of its development. Its goals are to enhance the
responsiveness and usability of systems while
preserving quality

[hsejpal | tphull]@cs.ucl.ac.uk

The Goal of Software Performance
Engineering

• To build predictable, adequate performance into
systems by considering quantative behaviour
from a system’s requirements stage through to
its maintenance and enhancement.

• Due to increasing system complexity, rapidly
evolving software tools, performance
engineering often represents the most
challenging aspect of system building.

[hsejpal | tphull]@cs.ucl.ac.uk

3

When Can SPE be used?
• Software Performance Engineering is an integral

part of the software development cycle –
requirements to final transition

• Questions about performance metrics need to
be answered – what and how to measure?

• Requires methods and procedures to extract
meaningful information from a software system

[hsejpal | tphull]@cs.ucl.ac.uk

Why is SPE Used?
ADVANTAGES

• Improves hardware resource utilisation

• Performance engineering puts a different perspective on software
design and development procedures. Implemented correctly,
performance engineering reciprocates good, simple and efficient
software.

• Extended thought to performance engineering leads to simple
designs that are both correct and fast
– Bell’s Law: cheapest, fastest and most reliable components of a

system are the ones that aren’t there!

[hsejpal | tphull]@cs.ucl.ac.uk

4

Why Is SPE Used?
DISADVANTAGES

• Developers believe that methods needed are too
demanding – prefer to adopt a ‘fix it later’ approach

• Its easier to detect performance problems after the
system has been realised

• Common Myth
– People believe that performance issues can be

resolved by using faster hardware

[hsejpal | tphull]@cs.ucl.ac.uk

Without Software Performance
Engineering

• “80% of all client/server projects have to be
resigned because of performance issues, not
because they didn’t meet the functional needs of
the users” [INFO]

• Costs to companies such as
– Business failures
– Lost income
– Reduced competitiveness
– Damaged customer relations
– Additional project resources

[hsejpal | tphull]@cs.ucl.ac.uk

5

What does Software Performance
Engineering Cost

• Lucent Technologies has reported that the
cost of SPE for performance-critical
projects is about 2% - 3% of the total
project budget

• Bank One Statistic
– SPE Cost $147,000
– Annual Saving $1,300,000

[hsejpal | tphull]@cs.ucl.ac.uk

Implementing Software Performance
Engineering

• Efficient s/w allows users to use their h/w more
efficiently

• Should be implemented and addressed at all stages
in s/w development as an integral part of the
development process

• SPE is a notoriously difficult and thankless task
“Problem prevention is a thankless act, but a problem

resolution is a hero maker” [PENG]
• Various approaches to implementing SPE
• Area in s/w development that is widely overlooked

[hsejpal | tphull]@cs.ucl.ac.uk

6

Levels of SPE Improvement
System Structure

the most crucial level - dictates architectural performance

Modular Structure

defines performance of s/w data structures

Algorithm Implementation

defines performance of underlying algorithmic properties

Translation to Machine Code

defines compilation of program and machine code generation

Hardware Improvements

the way in which s/w performance is affected by system h/w

[hsejpal | tphull]@cs.ucl.ac.uk

SPE Approaches

CURE
Build system and monitor
under various workloads and
conditions

PREVENTION
Model system quantitatively

in order to analyse how
system will perform

Is Prevention Better Than Cure?

Two Main Approaches to SPE

[hsejpal | tphull]@cs.ucl.ac.uk

7

CURE

• ADVANTAGES
– Exact measurements obtained
– Easy to deploy
– Fits well into an incremental development process

• DISADVANTAGES
– Requires a working system
– Impractical when developing time/safety critical system

– Major performance deficiencies that require structural
redesign will be extremely hard to reconfigure

– Can result in long run expense - if s/w does not meet
performance requirements

[hsejpal | tphull]@cs.ucl.ac.uk

Build S/W System, Monitor Performance, Improve Performance

PREVENTION

• ADVANTAGES
– Problems predicted and addressed at earlier stage in s/w

development process
– Allows testing the impossible
– Model unexpected scenarios to measure performance
– Simulate scenarios that could damage the real world
– Long term time and budget benefits

• DISADVANTAGES
– Risk oversimplification
– Cannot model everything - scenarios often missed out
– Initially expensive

[hsejpal | tphull]@cs.ucl.ac.uk

Model system, Monitor Performance, Evaluate / Improve Design

8

Measuring S/W Performance
• Before committing to a given design, calculate in

rough terms the achievable s/w performance
• Requires use of s/w metrics to estimate / measure

and analyse performance under various conditions
• How do we go about measuring s/w performance? -

Instrumentation
– Identify expensive operations by allocating cost in terms of

system resources to these operations within the s/w
– Cost is measured in terms of s/w metrics e.g.

• % runtime / operation
• Processed transactions / second
• % of events causing failure

– Use these metrics to accept or reject the system, dependant
on client requirements, competition, expected workload etc.

[hsejpal | tphull]@cs.ucl.ac.uk

Performance Enhancing Techniques
• Once expensive operations are identified, we need to use

performance enhancing techniques to optimise s/w performance

• Various techniques exist (formal / informal)

[hsejpal | tphull]@cs.ucl.ac.uk

Performance
Enhancing
Techniques

Parallelism

Data Structure
Manipulation

Store Pre-
computed
Results

Generalisation

Logic Rules Loop
Optimisation

Performance
Tuning

9

Data Structure Manipulation

Augmentation
Often beneficial to augment
data structures with
redundant information to
allow faster access to it

E.g. Accessing a file by line
number - it is useful to build array
whose elements point to the
beginning of each line

[hsejpal | tphull]@cs.ucl.ac.uk

Reduction / Elimination
Eliminate redundancies in
sparse data structures to

allow improved performance
when accessing the data

E.g.Sparse data structures can
result in wasted resources when

applying algorithms to the data
structure

Store Pre-computed Results

• If a module / section of code computes a particular
calculation several times, it would be efficient in
terms of performance if the result of this calculation is
stored as a partial result

• A form of caching - rather than computing an
operation each time to obtain the result, the result is
stored allowing fast access to it

• A form of Lazy Evaluation - only evaluating a result
when it is needed

[hsejpal | tphull]@cs.ucl.ac.uk

10

Performance Tuning
• Minimising big-O complexity of the program - use of

asymptotically efficient algorithms
• Avoid expensive algorithms where possible i.e. use nlogn

rather than n2 complexity when choosing an algorithm
• Requires good knowledge of algorithms and their

performance in terms of complexity
• Remember: Time-cost analysis should be machine

independent (same implementations on different machines
introduces a constant factor)

• Choosing suitable efficient algorithms requires knowledge
of algorithm domain, frequency of use, best and worst
case evaluations … see 2B12 Denise Gorse (Analysis of
Algorithms)

[hsejpal | tphull]@cs.ucl.ac.uk

Loop Optimisation
• Effective coding of loops is a technique that can

quickly improve s/w performance
• E.g.

for(int i=0; i<=10; ++i) {
int x=10;
System.out.println(x+i);

}

• The performance of the ‘for’ loop can be improved by
initialising x outside the scope of the loop

• A simple and quick way of improving s/w
performance

[hsejpal | tphull]@cs.ucl.ac.uk

11

Logic Rule Optimisation
• Optimising the evaluation of logical functions

• E.g.
– f(a) + g(b) > min
– Assume we know f(a) and g(b) are non-negative values
– Improve long run performance by evaluating if f(a) > min
– If f(a) > min then we know the logical function will be > min
– If f(a) <= min then we evaluate f(a) + g(b) > min
– Overhead of checking - so need to carefully deduce the domain of

the function

• Conjunctive and Disjunctive logical functions can be ordered in
code so to evaluate the cheapest operations first. This then
allows us to try and ‘short circuit’ the the logical evaluation as
soon as possible

• Basically, try and reduce the logical computation that the h/w
needs to engage in through SPE techniques

[hsejpal | tphull]@cs.ucl.ac.uk

Generalisation
“the inventor’s paradox”

• If is often cheaper in the long run to optimise a general solution
rather than optimising a specialised solution

• E.g. sorting an array of 4999 elements
– this can be optimised by writing a specialised routine to

perform this task
• for (int i=0; i<4999; i++) { … }

– OR …
– write a generalised routine that can sort an array of any size

• for (int i=0; i<arraySize; i++) { … }

• Optimising a generalised routine is more complex, however in
the long run this optimisation will pay dividends - it is easier than
optimising many specialised routines

[hsejpal | tphull]@cs.ucl.ac.uk

12

Parallelism
• Improve s/w performance by effectively using

concepts of concurrent programming
• Can lead to effective use of system processor(s) to

improve s/w performance and enhance speed of
operations
– E.g. speed up system response by off-loading time

consuming tasks to separate processes
– E.g. Improve system throughput performance by using

multiple processes to manage communication and device
latencies

• However, requires complex modelling techniques to
achieve concurrent design

[hsejpal | tphull]@cs.ucl.ac.uk

Performance Enhancing Techniques -

Issues

• The techniques mentioned can be used to optimise
s/w performance when implementing either of the two
approaches:
– CURE - to improve the built s/w performance
– PREVENTION - during design and modelling

• Two major concepts and considerations when
developing performance efficient s/w will be
considered next:
– Bottlenecks
– Premature Optimisation

[hsejpal | tphull]@cs.ucl.ac.uk

13

Bottlenecks
• Some code is executed more frequently than other parts of code

• These frequently accessed areas are potential bottlenecks in
the system

• Gene Amdahl’s Law states,
Speeding up code inside a bottleneck has a bigger impact on
s/w performance than speeding up code outside the bottleneck

• Therefore, often, the frequency of code access is more
important than the performance of a section of code

• 90/10 Rule: 90% of runtime is usually spent in 10% of code
• Amdahl - if a part of code is responsible for a fraction f of

runtime, and can be sped up by a factor s - the overall speed
will be:

((1-f) + f) / s

• Bottlenecks are hard to detect and are generally found within
system provided code.

[hsejpal | tphull]@cs.ucl.ac.uk

Premature Optimisation
“the root of all evil” [Knuth]

• After the design of a performance aware system, you should not
think about efficiency until testing is complete

• REASONS:
– Optimising code often makes the code more complex hence the

code is harder to debug
– Very likely to spend times making areas of code performance

efficient where it does not really matter
• E.g. Improving a function from 10% of runtime to 6% of runtime is

worthwhile, however, improving a function that is 0.001% of runtime to
0.0006% may not be as effective

• If you optimise at this level, there may be thousands of operations that
can optimised

– Easy to get carried away and deferred from the s/w requirements
– The design should incorporate s/w performance considerations,

hence the architecture of the built system should be efficient

[hsejpal | tphull]@cs.ucl.ac.uk

14

Prevention Better Than Cure...

• We have seen various techniques to improve s/w
performance - these considerations should be taken
into account when thinking of s/w design and
implementation

• We have also seen the two main approaches of s/w
development:
– CURE

– PREVENTION

• Now we will take a closer look at PREVENTION and
specifically modelling as a technique to improve the
s/w of systems

[hsejpal | tphull]@cs.ucl.ac.uk

Modelling
• The modelling approach is a way of representing the performance of an

imaginary or incomplete system (see 2B12 Soren Sorenson - Systems
Modelling)

• A widely studied and researched area of computing. Various modelling
techniques based around mathematical and theoretical analysis have
been developed to aid SPE

• Various techniques include the following

[hsejpal | tphull]@cs.ucl.ac.uk

Performance
Modelling

Techniques

Queuing
Networks

Flow Graphs

Timed Petri
Nets

Simulations

Stochasitic
Process
Algebras

Hierarchical
Models

State Transition
Models

15

Steps of Performance Modelling
Flow Diagram below shows the steps taken in order to deploy
modelling as part of SPE

[hsejpal | tphull]@cs.ucl.ac.uk

Understand Objectives if
System and Overall

Investigation

Predict Workload and Build
System Workload Model

Build a Performance Model

Transform Model into
Executable Assessable

Model

Execute/Analyse Model and
Derieve Performance Goals

Analyse Whether
Performance Measures

Meet Performance Goals

Modify System and
Reiterate

Stochastic Process Algebras
• Proposed as a tool for performance &

dependency modelling
• Allows ability to model a system as the

interaction of its subsystems
• So what exactly is it?

– An extension of process algebras such as
FSP where the time of an occurrence of
actions is determined by random variables

[hsejpal | tphull]@cs.ucl.ac.uk

16

Application of Stochastic Process
Algebras

• Consider the following 4-tier architecture

[hsejpal | tphull]@cs.ucl.ac.uk

Browser

JSP

EJB

JDBC

Application of SPA’s Continued

• Using Stochastic Process Algebra’s we are able
to model the system interactions before it is built
– For example querying the database
– Use SPA to model the architecture as individual

components – done by modelling the system with a
normal Process Algebra then mapping it onto SPA

– Since the modelling takes place before the system is
built time and resources are saved on prototyping and
testing

[hsejpal | tphull]@cs.ucl.ac.uk

17

Future Trends in SPE
• A well understood formalism for performance

engineering modelling - probably based on OOAD
• Embed performance engineering into a s/w

development methodology
• Integrate performance engineering tools with current

design and development tools
• Embed performance modelling as part of

performance engineering and testing frameworks
• Automated performance engineering procedures
• Considerable research is still required into this

subject

[hsejpal | tphull]@cs.ucl.ac.uk

Research Directions ...

• Integration of techniques and automated tools for
performance engineering

• Formalise the procedure for performance engineering
- integrate with current formalisms

• Embed performance engineering as part of new s/w
development processes as an integral past of the
process

• Current work comprises research into mappings from
UML to Layered Queuing Networks and Stochastic
Process Algebra Models

[hsejpal | tphull]@cs.ucl.ac.uk

18

Summary

• When and why SPE is used.
• Different Approaches
• Implementation of SPE
• CURE vs. PREVENTION
• Performance Enhancing Techniques
• Steps of Performance Modelling

– An example: Stochastic Process Algebras

• Future & Research Directions

[hsejpal | tphull]@cs.ucl.ac.uk

References
• Text References

– SMITH[1990] Performance Engineering of Software Systems
Addison-Wesley

– SOMMERVILLE[2001] Software Engineering, 6th Edition
Addison-Wesley ISBN 0-201-39815-X

• Internet URL References
– www.cs.mu.oz.au/252/s9_perf .tty
– www.cs.utexas .edu/users/software/
– www.peak.cs.hut.fi/research/13.html
– www.perfeng.com/
– www.softwaresystems .org/future.html
– www.cs.ucl.ac.uk/staff/o.gotel/

• Professional Bodies
– BCS Performance Engineering - www.cee.hw.ac.uk/~pjbk/perfeng/

Join electronic mailing list, send email to:
uk-performance-request@cee.hw.ac.uk

[hsejpal | tphull]@cs.ucl.ac.uk

