
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Mutual Exclusion

2© Wolfgang Emmerich, 1998/99

Goals of this lecture

� Thread interaction via shared memory
� Avoid interference
� Synchronisation
� Mutual exclusive access

2

3© Wolfgang Emmerich, 1998/99

Ornamental Garden Problem

� Garden open to the public
� Enter through either one of two turnstiles
� Computer to count number of visitors

� Each turnstile implemented by a thread

Garden

East
Turnstile

West
Turnstile

Count

4© Wolfgang Emmerich, 1998/99

Ornamental Garden: Counter class

class Counter {
int value_=0;
public void increment() {

int temp = value_; //read
Simulate.interrupt();
++temp; //add1
value_=temp; //write

}
}
� Simulated interrupt calls yield() to force

thread switch.

3

5© Wolfgang Emmerich, 1998/99

Ornamental Garden: Turnstile class

class Turnstile extends Thread {
Counter people_;
Turnstile(Counter c) {

people_ = c;
}
public void run() {

while(true)
people_.increment();

}
}

� For full implementation see online version

6© Wolfgang Emmerich, 1998/99

Ornamental Garden: Program

Counter people_ = new Counter();

Turnstile west_ = new Turnstile(people_);

Turnstile east_ = new Turnstile(people_);

west_.start();

east_.start();

� What will happen?

Demo: Ornamental Garden

4

7© Wolfgang Emmerich, 1998/99

FSP Spec of Ornamental Garden

const N = 3 range T = 0..N
VAR = VAR[0],
VAR[u:T] = (read[u] -> VAR[u]

| write[v:T]-> VAR[v]).
TURNSTILE = (arrive -> INCREMENT

| suspend-> resume-> TURNSTILE),
INCREMENT = (val.read[x:T] -> val.write[x+1]->

TURNSTILE)+{val.read[T],val.write[T]}.
||GARDEN = (east:TURNSTILE || west: TURNSTILE

|| {east,west}::val:VAR
)/{stop/east.suspend,

stop/west.suspend,
start/east.start,
start/west.start}.LTSA

8© Wolfgang Emmerich, 1998/99

Interference

� FSP spec supports the following trace:
east.arrive→east.val.read.0→west.arrive→
west.val.read.0→east.val.write.1→west.val.write.1

� This is an example of a destructive update
� Destructive updates caused by arbitrary

interleaving of read and write actions on
shared variables is called interference

� Avoid interference by making access to
critical sections mutually exclusive

5

9© Wolfgang Emmerich, 1998/99

Critical Section

� A critical section is a sequence of actions
that must be executed by at most one
process or thread at a time

� Can be found by searching for sections of
code that access or update variables or
objects that are shared by concurrent
processes.

10© Wolfgang Emmerich, 1998/99

Modelling Mutual Exclusion

� A lock can be modelled by:
LOCK = (acquire->release->LOCK).

� Attaching lock to shared resource (VAR):
||LOCKVAR = (LOCK || VAR).

� Critical section acquires/releases lock:
INCREMENT = (val.acquire ->

val.read[x:T] -> val.write[x+1]->
val.release -> TURNSTILE)
+{val.read[T],val.write[T]}.

6

11© Wolfgang Emmerich, 1998/99

Critical Sections in Java

� Synchronised methods implement mutual
exclusion

� Implicitly locking objects
class Counter {

int value_=0;
public synchronized void increment() {

int temp = value_; //read
Simulate.interrupt();
++temp; //add1
value_=temp; //write

}
} Demo: Correct Ornamental Garden

12© Wolfgang Emmerich, 1998/99

Synchronised Statements in Java

� Locks on individual objects:

public void run() {
while(true)

synchronized(people_){
people_.increment();

}
}

� Less elegant than synchronized methods
� More efficient than synchronized methods

7

13© Wolfgang Emmerich, 1998/99

Summary

� Interference
� Critical sections
� Mutual Exclusion
� Synchronised methods in Java
� Synchronised statements in Java

