3C03 Concurrency:
Concurrent Architectures -
Announcer/Listener

Wolfgang Emmerich

© Wolfgang Emmerich, 1998/99

Outline

m Motivation

m Announcer-Listener

m Announcer-Listener Model

m Announcer-Listener Safety and Progress
m Announcer-Listener Implementation

m Summary

© Wolfgang Emmerich, 1998/99




Motivation

m Notification of events
m Originate in one location (announcer)

m Communicated to multiple interested
parties (listeners)

m Announcer does not know listeners
m Listeners do not know announcer

m Communication managed by connector
called event manager

© Wolfgang Emmerich, 1998/99

Announcer-Listener Architecture

LISTENER

ANNOUNCER (EVENTMANAGER LISTENER

t

LISTENER

© Wolfgang Emmerich, 1998/99




Application Examples

m User Interface Frameworks:
» AWT Listeners are ordinary objects
* Events are mouse clicks, button presses

* Events cause operations to be invoked in
Listeners

m CORBA Event Service
 Event Producers are Announcers
* Event Channels are Event Managers
 Event Consumers are Listeners
» Used, for example in distributed stock tickers

© Wolfgang Emmerich, 1998/99 5

Filtering & Recursive Events

m Listeners may only be interested in a
subset of events

m They register with Event Manager using a
“pattern” of events they wish to receive

m Listeners may themselves be announcers
and forward events into subsequent Event
Managers

m Listeners do not have to be active
processes

© Wolfgang Emmerich, 1998/99




Event Manager Model

set Listeners={a,b,c,d}
set Pattern = {patl, pat2}
REQ STER = | DLE,
| DLE=(regi ster[p: Pattern]->MATCH p]
| announce[ Pattern] ->1 DLE),
MATCH[ p: Pattern] =
(announce[ a: Pattern] ->
if (a==p) then (event]a]->MATCH p]
| der egi st er - >I DLE)
el se MATCH p]
| der egi st er->I DLE) .
| | EVENTMGR=( Li st ener s: REG STER)
/ {announce/ Li st ener s. announce}.

_ LTSA |,
© Wolfgang Emmerich, 1998/99

Announcer-Listener Model

ANNOUNCER = (‘announce| Patt er n] - >ANNOUNCER) .
LI STENER( P=' pattern)=(regi ster[ P]->LI STENI NG ,
LI STENI NG=( comput e- >LI STENI NG
| event [ P] - >LI STENI NG
| event [ P] - >der egi st er - >STOP
)+{register[Pattern]}.
| | ANNOUNCER LI STENER=( a: LI STENER(' pat 1)
| | b: LI STENER("' pat 1)
| | c: LI STENER("' pat 2)
| | d: LI STENER(" pat 2)
| | EVENTMGR
| | ANNOUNCER) .

© Wolfgang Emmerich, 1998/99 8




Announcer-Listener Analysis

m Safety-Properties:

» Listeners receive events then and only then
when they are registered for them

» Listeners only receive events that match the
patterns they have registered for

m Progress-Properties

* Announcer should be able to announce
events independent of state of Listeners

© Wolfgang Emmerich, 1998/99

Announcer-Listener Analysis

m Safety Properties:

property
SAFE=(regi ster[ p: Pattern]->SAFE[ p]),
SAFE[ p: Pat t er n] =(event [ p] - >SAFE[ p]
| der egi st er - >SAFE) .

m Progress Properties:
progress ANNOUNCE[ p: Pat t er n] ={ announce] p] }

© Wolfgang Emmerich, 1998/99 10




Announcer-Listener Example

m Game:

» Coloured Blocks are moving around on a
canvas

* Hit them with a mouse press

* A hit block turns black and stops moving

* Blocks are threads that listen for mouse
events

* Events are announced by the display canvas

» Events are generated by the AWT classes for
Event handling

© Wolfgang Emmerich, 1998/99

Demo
11

Announcer Listener Design

Applet

7

Thread

EventDemo

-

+init()
+go()
+ ended()

+ stop( )
+ handleEvent( )

BoxMover

movers

1..*|- hit : Boolean = false

Canvag

Tiglj-lnit(())

MouseListener

B

MouseAdapter

£

BoxMover::MyListener

displa}s& %

BoxCanvas

+ addMouseListener( )

+ removeMouseListener( )

© Wolfgang Emmerich, 1998/99

/iisplay

listene

+ mousePressed( )

12




Summary

m Announcer-Listener

m Applications for Announcer-Listener

m Announcer-Listener Model

m Announcer-Listener Safety and Progress
m Announcer-Listener Implementation

m Summary

© Wolfgang Emmerich, 1998/99

13




