3CO03 Concurrency:
Concurrent Architectures:
Filter Pipelines

Wolfgang Emmerich

© Wolfgang Emmerich, 1998/99

Outline

m Motivation

m Concurrent Prime Sieve of Eratosthenes
m Modelling Prime Sieve in FSP

m Buffer Tolerance

m Abstraction from Filter Tasks

m Architectural Property Analysis

m Java Prime Sieve Implementation

m Buffering

© Wolfgang Emmerich, 1998/99




Concurrent Architectures

m Software architectures identify software
components and their interaction

m In the context of this course architectures
are process structures together with they
way processes interact

m Aim to ignore many of the detalils
concerned with application

m Study structures that can be used in many
different situations and applications

© Wolfgang Emmerich, 1998/99

Concurrent Architectures

m This is the first of three lectures each
identifying a particular architectural style.
Architectural styles are re-occurring
patterns of components and connectors

m We discuss
* Filter pipelines
» Supervisor workers
 Announcer listener

m Each of these commonly occur in
concurrent and distributed systems.

© Wolfgang Emmerich, 1998/99




Filter Pipelines

m Filters receive input value stream and
transform them into output value stream.
m We consider filters with one input and one

output stream
m Filters are connected by pipelines
» Redirect output of one filter to input of next

* May buffer values to de-couple processes
from each other

m Example (Unix):
e cat ¢340.txt 1b11.txt d50.txt | sort | less

© Wolfgang Emmerich, 1998/99

Example: Prime Sieve

m Goal: compute primes between 2 and N

m Classic algorithm by Eratosthenes known
as the Prime Sieve:

for (i:2..N) sieve[i]:=i;

for (i:2..N)
if (sieve[i]!=0) print(i);
for (j:i..N)
I f (sieve[j]% =0) sieve[]]: =0;
end

end

© Wolfgang Emmerich, 1998/99




Prime Sieve FSP Model

m ldea:
* Generate a Stream of numbers 2..N

e Create one filter for each number between 2
and N that filters all the numbers that are
multiples and only outputs the others

* Interconnect Filters by Pipes
m Leads to Filter Pipeline:

Gen Filter —»Filter Filter

© Wolfgang Emmerich, 1998/99 7

Prime Sieve in FSP

const MAX=5
range NUME=2. . MAX
set S={[NUM, eos}

Pl PE=( put X: S] >get [ x] - >PI PE) .
GEN=GEN 2
GEN[ x: NU (out put[x]->if x<MAX then GEN] x+1]

el se (out. put.eos->end->GEN)).
FI LTER=(i n. get[ p: NUM - >pr| e[ ] >F| LTER] p]
| in.get.eos->ENDFI LTER
FI LTER[ p: NUM =(i n. get [ x: NUM -
if x%!=0 then (out put[ x] - >FI LTER p])
el se FILTER] p]
| i n.get.eos->ENDFI LTER),
ENDFI LTER=( out . put . eos- >end- >FI LTER) .
| | PRI MES(N=4) =
(gen: GEN | pipe[O..N-1]: PIPE| |filter[0..N1]: FILTER)
?p| pe[ 0]/ gen. out
pipe[i:0..N1 /filter i].in
plpe| 1. Nl/f Iter[i-1]. out,
r[O N1]. end gen. end}}

i N 1] prine, end}
_ LTSA |
© Wolfgang Emmerich, 1998/99

—

—

q_
——+




Abstraction from Application Details

m Above Prime Sieve Model has just one
buffer slot

m Explosion in state space occurs if we
attempt to model bigger buffer space in
pipes

m From an architectural point of view it is
not important that integers are passed as
buffer elements

m We can abstract from this application
detail

© Wolfgang Emmerich, 1998/99

General Filter Pipeline

| | AGEN=CGEN { out . put/out. put[ NUM}.

| | AFI LTER=FI LTER/ { out . put/ out . put [ NUM ,
in.get/in.get[NUM,
prinme/prime[ NUM}.

| | API PE=PI PE/ { put/ put [ NUM , get/get [ NUM }.

| | PRI MES( N=4) =(gen: AGEN | pi pe[ 0. . N-1]: API PE]| |
filter[0..N1]: AFILTER)

/ {pi pe[ 0]/ gen. out,
pipe[i:0..N1]/filter[i].in,
pipe[i:1..N1]/filter[i-1].out,
end/ {filter[0..N1].end, gen. end}

}.

_ LTSA |,
© Wolfgang Emmerich, 1998/99




Buffered Pipelines

| | MPI PE(B=4) =
if B==1 then APIPE
el se (APIPE/ {m d/get}]|]| MPI PE(B-1)/{m d/put})
@ put, get}.

| | PRI MES( N=4) =(gen: AGEN | pi pe[ 0. . N-1]: MPI PE]| |
filter[0..N1]: AFILTER)

/ {pi pe[ 0]/ gen. out,
pipe[i:0..N1]/filter[i].in,
pipe[i:1..N1]/filter[i-1]. out,
end/ {filter[0..N1].end, gen. end}

}.

_ LTSA |,
© Wolfgang Emmerich, 1998/99

Architectural Property Analysis

m Refer to properties for abstract model
m Concerned with structure and interaction
m Not with detailed operations
m General properties
* Absence of deadlocks

 Eventual termination

» Ordering of results: Filters should produce
results in the order in which they appear

© Wolfgang Emmerich, 1998/99 12




Architectural Properties in FSP

m Absence of deadlocks:
As usual

m Termination of the system:
progress END = {end}

m Production of results in proper order:
property
PRI MEP( N=4) =PRI MEP[ 0] ,
PRIMEP[i:0.. N =
(when(i<N) filter[i].prinme->PRI MEP[i +1]
| end- >PRI VEP) .
| | ORDER_CHECK=( PRI MES| | PRI NEP) .

© Wolfgang Emmerich, 1998/99 13

Java Prime Sieve Implementation

Thread
Canvas
in Filter _ ‘
- index : int di$ PrimeCanvas

+ run()

1> /display

<<implements>> fiterd 1 out [ Generator
<<implements>> Primes |+ $ MAX :int = 50|
: : pips 20
PipelmplBuf| | PipelmplUnbuf +init( ) 1 1

o

+ sto
+ hal%lt)aEvent( )

_ Demo | 4
© Wolfgang Emmerich, 1998/99




Summary

m Concurrent Software Architectures?

m Filter Pipelines

m Modelling Filters & Pipelines in FSP

m Abstraction from Filter Tasks

m Impact of Buffering

m Architectural Property Analysis

m Java Prime Sieve Implementation

m Buffering

m Next: Supervisor-Worker Architectures

© Wolfgang Emmerich, 1998/99

15




