
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Safety

2© Wolfgang Emmerich, 1998/99

Goals

� Define the concept of safety
� Explicit and implicit definition of safety

properties
� Modelling:

• How can safety properties be specified in
FSP

• Safety analysis using LTSA
• Proof that our approach to locking achieves

mutual exclusion

2

3© Wolfgang Emmerich, 1998/99

Safety Properties

� Safety properties assert that nothing ‘bad’
will ever happen during the execution of a
concurrent program

� Examples of safety properties
• Mutual Exclusion
• Deadlock Freedom
• Monitor Invariants

� We are interested in
• Do our FSP models satisfy safety properties?
• How do we transform safe models into safe

implementations?

4© Wolfgang Emmerich, 1998/99

Safety in FSP: Property

� Safety property definition is supported by
FSP

� A safety property is a process itself
� It does not include hidden actions
� Is denoted using keyword property

� Specifies acceptable behaviour for the
process it is composed with

3

5© Wolfgang Emmerich, 1998/99

Safety in FSP: Property Satisfaction

� A system S will satisfy a property P if S
can only generate sequences of actions
which when restricted to the alphabet of
P, are acceptable to P.

� Example:
property POLITE=(knock->enter->POLITE).

HESITANT = (knock->knock->enter->HESITANT).

IMPATIANT = (enter->IMPATIANT).

||CHK_HES = (HESITANT || POLITE).

||CHK_IMP = (IMPATIANT || POLITE).

6© Wolfgang Emmerich, 1998/99

Properties in LTS

� LTS generated for properties have
• an additional error state (-1)
• transitions leading to the error state for

actions that would violate the property

� Example:

1-1 0

knock

enter

knock

enter

4

7© Wolfgang Emmerich, 1998/99

Exercise

� Draw the LTS for
property FRIEND=(come->tea->leave->FRIEND).

1-1 0

come

leave

come
leave

tea
leave

2

tea

tea
come

8© Wolfgang Emmerich, 1998/99

Safety Analysis using LTSA

� We automate safety analysis using the
Labelled Transition System Analyser

� LTSA can
• compute the LTS for a safety property
• compose the property with the process to be

checked
• If there is a trace from the initial state to the

error state the system is unsafe

LTSA

5

9© Wolfgang Emmerich, 1998/99

ERROR states

� Processes can be implicit properties if
they use the state ERROR

� ERROR is a special state (like STOP).
� The perspective is different:

• Properties specify desirable behaviour
• Processes which use the ERROR state

specify undesirable behaviour

� Example: mutual exclusion

10© Wolfgang Emmerich, 1998/99

Ornamental Garden Revisited

const N = 2
range T = 0..N
VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]

|write[v:T]->VAR[v]).
TURNSTILE = (arrive->INCREMENT

|suspend->resume->TURNSTILE),
INCREMENT = (value.read[x:T]

->value.write[x+1]->TURNSTILE
)+{value.read[T],value.write[T]}.

||GARDEN = (east:TURNSTILE || west:TURNSTILE
||{east,west,display}::value:VAR

)/{stop/east.suspend,
stop/west.suspend,
start/east.resume,
start/west.resume}.

LTSA

6

11© Wolfgang Emmerich, 1998/99

Mutual Exclusion as Safety Property

TEST = TEST[0],

TEST[v:T] =

(when (v<N)

{east.arrive,west.arrive}->TEST[v+1]

|stop->CHECK[v]),

CHECK[v:T] = (display.value.read[u:T] ->

(when (u==v) start -> TEST[v]

|when (u!=v) wrong -> ERROR)

)+{display.value.read[T],

display.value.write[T]}.

||TESTGARDEN = (GARDEN || TEST). LTSA

12© Wolfgang Emmerich, 1998/99

FSP Model for Locking

VAR = VAR[0],
VAR[u:T]=(read[u]->VAR[u]

| write[v:T]->VAR[v]).
LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).
TURNSTILE = (arrive->INCREMENT

|suspend -> resume -> TURNSTILE),
INCREMENT = (value.acquire->value.read[x:T]

->value.write[x+1]
->value.release->TURNSTILE

)+ {value.read[T],value.write[T]}.
||GARDEN = (

east:TURNSTILE || west:TURNSTILE ||
{east,west}::value:LOCKVAR)
/{stop/east.suspend,stop/west.suspend,

start/east.resume,start/west.resume}.

7

13© Wolfgang Emmerich, 1998/99

Safety Properties for Locking

TEST = TEST[0],

TEST[v:T] = (when
(v<N){east.arrive,west.arrive}->TEST[v+1]

| stop->CHECK[v]),

CHECK[v:T] = (display.value.read[u:T] ->

(when (u==v) start -> TEST[v]

|when (u!=v) wrong -> ERROR)

)+{display.value.read[T],

display.value.write[T],

display.value.acquire,

display.value.release}.

||TESTGARDEN = (GARDEN || TEST).
LTSA

14© Wolfgang Emmerich, 1998/99

Summary

� Introduced the concept of Safety
� Specification of Safety Properties in FSP
� Checking of Safety Properties using LTSA
� Proof of Mutual Exclusion based on

Locking
� Next Session: Revision and Tutorial on

Model Checking

