
1

1© Wolfgang Emmerich, 1998/99

Wolfgang Emmerich

3C03 Concurrency:
Starvation and Deadlocks

2© Wolfgang Emmerich, 1998/99

Goals

� Reader/Writer problem

� Starvation

� Dining Philosophers Problem

� Deadlocks

� Liveness Analysis using LTS

2

3© Wolfgang Emmerich, 1998/99

Reader / Writer Problem

� Monitors and Java’s synchronize
statement guarantee mutual access to
objects / methods

� Often it is ok for multiple readers to
access the object concurrently

� Properties required:

Demo: Reader/Writer

4© Wolfgang Emmerich, 1998/99

Read/Write Monitor

class ReadWrite {
private protected int readers = 0;
private protected boolean writing = false;
// Invariant: (readers>=0 and !writing) or
// (readers==0 and writing)
synchronized public void acquireRead() {
while (writing) {… wait(); …} ++readers;

}
synchronized public void releaseRead() {

--readers; if(readers==0) notify();
}
synchronized public void acquireWrite() {
while (readers>0||writing) {… wait(); …}
writing = true;

}
synchronized public void releaseWrite() {
writing = false; notifyAll();

}
}

Starvation

3

5© Wolfgang Emmerich, 1998/99

Writer Starvation

� NotifyAll awakes both readers and writers
� Program relies on Java having a fair

scheduling strategy
� When readers continually read resource:

Writer never gets chance to write. This is
an example of starvation.

� Solution: Avoid writer starvation by
making readers defer if there is a writer
waiting

6© Wolfgang Emmerich, 1998/99

Read/Write Monitor (Version 2)

class ReadWrite {
… // as before
private int waitingW = 0;// # waiting Writers
synchronized public void acquireRead() {
while (writing || waitingW>0) {… wait(); … }
++readers;

}
synchronized public void releaseRead() {… }
synchronized public void acquireWrite() {
while (readers>0 || writing) {
++waitingW; … try{ wait(); … --waitingW; }
writing = true;

}
synchronized public void releaseWrite() {… }

}
Demo: Reader/Writer v2

4

7© Wolfgang Emmerich, 1998/99

Reader Starvation

� If there is always a waiting writer:
Readers starve

� Solution: Alternating preference between
readers and writers

� To do so: Another boolean attribute
readersturn in Monitor that indicates
whose turn it is

� readersturn is set by releaseWrite()
and cleared by releaseRead()

8© Wolfgang Emmerich, 1998/99

Read/Write Monitor (Version 3)

class ReadWrite {
… // as before
private boolean readersturn = false;
synchronized public void acquireRead() {
while(writing ||(waitingW>0 && !readersturn))

{ … wait(); … }
++readers;

}
synchronized public void releaseRead() {
--readers; readersturn=false;
if(readers==0) notifyAll();

}
synchronized public void acquireWrite() {… }
synchronized public void releaseWrite() {
writing=false; readersturn=true; notifyAll();
}

} Demo: Reader/Writer v3

5

9© Wolfgang Emmerich, 1998/99

Deadlocks

� Process is in a deadlock if it is blocked
waiting for a condition that will never
become true

� Process is in a livelock if it is spinning
while waiting for a condition that will
never become true (busy wait deadlock)

� Both happen if concurrent processes and
threads are mutually waiting for each
other

� Example: Dining philosophers

10© Wolfgang Emmerich, 1998/99

Dining Philosopher Problem

� 5 Philosophers sit
around table

� They think or eat
� Eat with 2 chopsticks
� Only 5 chopsticks

available
� Each philosopher only

uses sticks to her left
and right

0

1

23

4
0

1

2

3

4

6

11© Wolfgang Emmerich, 1998/99

FSP Model of Dining Philosophers

PHIL=(hungry->left.get->right.get->eating->

left.put->right.put->thinking->PHIL).

FORK = (left.get-> left.put -> FORK

|right.get->right.put -> FORK).

||COLLEGE(N=5)=

(phil[0..N-1]:PHIL||fork[0..N-1]:FORK)

/{phil[i:0..N-1].left/fork[i].left,

phil[i:0..N-1].right/fork[((i-1)+N)%N].right}.

LTSA

12© Wolfgang Emmerich, 1998/99

Dining Philosophers in Java

class Philosopher extends Thread {
int identity;
Chopstick left; Chopstick right;
Philosopher(Chopstick left,Chopstick right){

this.left = left; this.right = right;
}
public void run() {
while (true) {
try {
sleep(…); // thinking
right.get(); left.get(); // hungry
sleep(…) ; // eating
right.put(); left.put();

} catch (InterruptedException e) {}
}

}
}

7

13© Wolfgang Emmerich, 1998/99

Chopstick Monitor

class Chopstick {
boolean taken=false;
synchronized void put() {
taken=false;
notify();

}
synchronized void get() throws

InterruptedException
{
while (taken) wait();

taken=true;
}

}

14© Wolfgang Emmerich, 1998/99

Applet for Diners

for (int i =0; i<N; ++I)

// create Chopsticks

stick[i] = new Chopstick();

for (int i =0; i<N; ++i){

// create Philosophers

phil[i]=new Philosopher(

stick[(i-1+N)%N],stick[i]);

phil[i].start();

}
Demo: Diners

8

15© Wolfgang Emmerich, 1998/99

Deadlock in Dining Philosopher

� If each philosopher has acquired her left
chopstick the threads are mutually
waiting for each other

� Potential for deadlock exists independent
of thinking and eating times

� Only probability is increased if these
times become shorter

16© Wolfgang Emmerich, 1998/99

Analysing cause of Deadlock

� We can use LTS for deadlock analysis
� A dead state in the composed LTS is one

that does not have outgoing transitions
� Are these dead states reachable?
� Use of reachability analysis
� Traces to dead states helps

understanding the causes of a deadlock

LTSA

9

17© Wolfgang Emmerich, 1998/99

� What is the problem with this solution?
� Are there other solutions?
� Deadlock can also be avoided if there is

always one philosopher who thinks

Deadlock Avoidance

� Deadlock in dining philosophers can be
avoided if one philosopher picks up sticks
in reverse order (right before left).

Demo: Deadlock free Diners

18© Wolfgang Emmerich, 1998/99

Deadlock Free Model

PHIL=(hungry->left.get->right.get->eating->

left.put->right.put->thinking->PHIL).

ODDPHIL=(hungry->right.get->left.get->eating->

left.put->right.put->thinking->ODDPHIL).

FORK = (left.get-> left.put -> FORK

|right.get->right.put -> FORK).

||COLLEGE(N=5)=

(phil[0..N-2]:PHIL||phil.4:ODDPHIL

||fork[0..N-1]:FORK)

/{phil[i:0..N-1].left/fork[i].left,

phil[i:0..N-1].right/fork[((i-
1)+N)%N].right}.

10

19© Wolfgang Emmerich, 1998/99

Summary

� Reader / Writer Problem
� Starvation
� Avoidance of Starvation
� Dining Philosophers Problem
� Deadlocks and Livelocks
� Deadlock Avoidance
� Next Session: Safety

