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Reinforcement Learning…

but first
Exploration v. Exploitation

Tie Matching

You have a co-worker that always wears 
either a magenta tie, or a blue tie
Turns out, it’s random: he wears the 
magenta tie with probability Pm and the 
blue tie with probability Pb=(1- Pm)
Let’s say you get a reward r when you 
guess right

Expectation of reward

If you guess magenta with probability Qm
and blue with probability Qr=(1- Qm)

Since this is linear in Qm which is bound by 
the rules of probability, the extrema is 
either Qm=0 if Pm<0.5, and Qm=1 if Pm>0.5
You always pick the tie with greater 
probability for maximum reward!
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Interestingly..

This is not what people do when given this task!
Psych experiments have shown that people tend 
to set Qm= Pm

This is called probability matching
However, it has been shown that people get the 
right answer (rather than probability matching) if:

They were provided with 
large financial incentives, 
meaningful and regular feedback, or 
extensive training

This simple problem

Indicates an interesting quandry of artificial 
intelligence:

Is AI supposed to be super-humanly rational 
(correct)?
Or is it supposed to be convincingly human (ala 
Turing Test)?
BTW, the Turing Test isn’t what most people 
think it is, but that’s another subject

What if you don’t know Pm?

Clearly, we must experiment to determine Pm

Let’s generalize by looking at the 2-armed bandit 
problem
BTW, a one-armed bandit is a slot machine, aka 
a fruit machine, aka a machine that takes money 
from chavey kids in London, and old women in 
Vegas, while providing meaningless but colorful
lights and noises as entertainment.
Like SkyOne, but random
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The two-armed bandit problem
(Holland, 1975)

Imagine two slot machines, side by side
Sort of a slot machine with two arms:
One gives reward with mean μ and std. dev. σ, 
the other has mean μ’ and std. dev. σ’
μ>μ’
The distributions have some overlap
We should allocate all trials to the higher-payoff 
arm
But we don’t know which arm is which

Exploration versus Exploitation

This dilemma is a keystone of AI
You must allocate some trials to both 
arms, so you can get an impression of 
which is which (exploration)
Then you must allocate all remaining trials 
to the higher-payoff (exploitation)

Two sources of loss

Let’s assume we have N trials to allocate
We allocate n to the apparently less-good 
arm
The loss associated with this strategy is

Where q(N-n,n) is the probability that the 
apparently less-good arm is the best arm
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The optimal allocation of trials

You can minimize L by choosing n=n*
such that:
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A Quasi-Realizable Strategy

Let’s say we take N trials, allocate n* to 
each arm, and the remaining N-2n* to the 
observed best arm
We could then iterate, allocating another N
trials, using a similar strategy to correct 
towards the appropriate value of n* for 2N
Etc.

How does n* vary as a percentage of N?

As a percentage:

You should allocate 
an exponentially 
decreasing 
percentage of trials to 
the observed worst
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For a k-armed bandit

A similar result holds:
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So, we know

Allocating increasing numbers of trials to 
the observed best is a near-optimal 
strategy
However, that doesn’t make things entirely 
clear, since it’s mainly an argument about 
form, not details

There is a body of literature

On learning automata that consider algorithms for 
updating action selection policies based on experience
Consider linear reward-penalty:

Which is applied for the “correct” action, and other action 
probabilities are adjusted to compensate
There is also linear reward-inaction, which only updates 
when the correct action is known to have been taken
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Another approach

Consider retaining the average reward 
value that you get every time a give action 
is taken:

How should we select actions based on 
these values?

( ) ( ) ( ) ( ) ( )1 2 3
1

...
ak

t
a

r a r a r a r a
Q a

k+

+ + +
=

Greedy action selection

Starting with all Q values set to equal, 
random values
Always select the action with the highest Q
value
This is, in general, a bad idea, which leads 
to premature convergence

Softmax Action Selection

Use the following action selection 
probabilities

Where t is a temperature parameter that 
can be tuned downward, towards 
increasingly greedy strategies
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In general, we update values 
incrementally

Recall
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Flywheels

Are a mechanical 
smoothing filter

xxx

τ

( )1t t t t

T C
J C
J T T
C
T T T

ω
ω τ ω

τ

α τ+

=
= −

= −

− = −T

Online Averaging With a "Flywheel 
Equation"

Consider a flywheel with a noisy input 
torque t, and a output torque T
A discrete time model of the flywheel is

Where α is inversely related to mass
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At Steady State

The mean value of T is the same as that of 
t but with lower noise
Low mass (high α ) flywheels have fast 
transients, and less "smoothing"
High mass (low α ) flywheels have slow 
transients, but smooth, steady output
We can use a flywheel to estimate the 
average of the Q values

Stochastic Approximation Theory Sez:

Flywheel-like updates of Q converge with 
probability one if

Which is true for online averaging, but not for 
flywheel updates with fixed α
However, we often use fixed α, to cope with 
nonstationarities, particularly in the dynamic 
problems we’ll cope with later
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