
1

Reinforcement Learning…

but first
Exploration v. Exploitation

Tie Matching

You have a co-worker that always wears
either a magenta tie, or a blue tie
Turns out, it’s random: he wears the
magenta tie with probability Pm and the
blue tie with probability Pb=(1- Pm)
Let’s say you get a reward r when you
guess right

Expectation of reward

If you guess magenta with probability Qm
and blue with probability Qr=(1- Qm)

Since this is linear in Qm which is bound by
the rules of probability, the extrema is
either Qm=0 if Pm<0.5, and Qm=1 if Pm>0.5
You always pick the tie with greater
probability for maximum reward!

[] () ()1 1 2 1m m m m m m m mE r Q P Q P Q P Q P= + − − = + − −

Interestingly..

This is not what people do when given this task!
Psych experiments have shown that people tend
to set Qm= Pm

This is called probability matching
However, it has been shown that people get the
right answer (rather than probability matching) if:

They were provided with
large financial incentives,
meaningful and regular feedback, or
extensive training

This simple problem

Indicates an interesting quandry of artificial
intelligence:

Is AI supposed to be super-humanly rational
(correct)?
Or is it supposed to be convincingly human (ala
Turing Test)?
BTW, the Turing Test isn’t what most people
think it is, but that’s another subject

What if you don’t know Pm?

Clearly, we must experiment to determine Pm

Let’s generalize by looking at the 2-armed bandit
problem
BTW, a one-armed bandit is a slot machine, aka
a fruit machine, aka a machine that takes money
from chavey kids in London, and old women in
Vegas, while providing meaningless but colorful
lights and noises as entertainment.
Like SkyOne, but random

2

The two-armed bandit problem
(Holland, 1975)

Imagine two slot machines, side by side
Sort of a slot machine with two arms:
One gives reward with mean μ and std. dev. σ,
the other has mean μ’ and std. dev. σ’
μ>μ’
The distributions have some overlap
We should allocate all trials to the higher-payoff
arm
But we don’t know which arm is which

Exploration versus Exploitation

This dilemma is a keystone of AI
You must allocate some trials to both
arms, so you can get an impression of
which is which (exploration)
Then you must allocate all remaining trials
to the higher-payoff (exploitation)

Two sources of loss

Let’s assume we have N trials to allocate
We allocate n to the apparently less-good
arm
The loss associated with this strategy is

Where q(N-n,n) is the probability that the
apparently less-good arm is the best arm

() () () ()(), ' , 1 ,L N n n q N n n N n q N n n nμ μ ⎡ ⎤− = − − − + − −⎣ ⎦

The optimal allocation of trials

You can minimize L by choosing n=n*
such that:

()

2
2

4 2* ln
8 ln

/ '

Nn b
b N

b

π

σ μ μ

⎡ ⎤
⎢ ⎥
⎣ ⎦

= −

A Quasi-Realizable Strategy

Let’s say we take N trials, allocate n* to
each arm, and the remaining N-2n* to the
observed best arm
We could then iterate, allocating another N
trials, using a similar strategy to correct
towards the appropriate value of n* for 2N
Etc.

How does n* vary as a percentage of N?

As a percentage:

You should allocate
an exponentially
decreasing
percentage of trials to
the observed worst

2 2

4 2

* ln
8 ln

n b N
N N b N

α
π

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0

0.005

0.01

0.015

0.02

0.025

0 20 40 60 80 100 120

N

al
ph

a

3

For a k-armed bandit

A similar result holds:

()
()

()

2 2

2 4 2

1
ln

8 1 ln

/ r

r b N
N r b N

b

α
π

σ μ μ

⎡ ⎤−
⎢ ⎥

−⎢ ⎥⎣ ⎦
= −

So, we know

Allocating increasing numbers of trials to
the observed best is a near-optimal
strategy
However, that doesn’t make things entirely
clear, since it’s mainly an argument about
form, not details

There is a body of literature

On learning automata that consider algorithms for
updating action selection policies based on experience
Consider linear reward-penalty:

Which is applied for the “correct” action, and other action
probabilities are adjusted to compensate
There is also linear reward-inaction, which only updates
when the correct action is known to have been taken

() ()[] () ()1 1 1 11 1t t t t t t t td d d dπ π α α π α π+ + + += − + = + −⎡ ⎤⎣ ⎦

Another approach

Consider retaining the average reward
value that you get every time a give action
is taken:

How should we select actions based on
these values?

() () () () ()1 2 3
1

...
ak

t
a

r a r a r a r a
Q a

k+

+ + +
=

Greedy action selection

Starting with all Q values set to equal,
random values
Always select the action with the highest Q
value
This is, in general, a bad idea, which leads
to premature convergence

Softmax Action Selection

Use the following action selection
probabilities

Where t is a temperature parameter that
can be tuned downward, towards
increasingly greedy strategies

() ()()
()()

exp
exp

t t
t

t t
b

Q a
a

Q b
τ

π
τ

=
∑

4

In general, we update values
incrementally

Recall

() () () () ()

() ()

() () () ()

1 2 3
1

1

1 1

...

1
1

a

a

a

k
t

a

t k t
a

t t a k t

r a r a r a r a
Q a

k

Q a r Q a
k

Q a Q a k r Q aα

+

+

+ +

+ + +
=

⎡ ⎤= + −⎣ ⎦+

⎡ ⎤= + −⎣ ⎦

Flywheels

Are a mechanical
smoothing filter

xxx

τ

()1t t t t

T C
J C
J T T
C
T T T

ω
ω τ ω

τ

α τ+

=
= −

= −

− = −T

Online Averaging With a "Flywheel
Equation"

Consider a flywheel with a noisy input
torque t, and a output torque T
A discrete time model of the flywheel is

Where α is inversely related to mass

()1 1t t tT T α ατ+ = − +

At Steady State

The mean value of T is the same as that of
t but with lower noise
Low mass (high α) flywheels have fast
transients, and less "smoothing"
High mass (low α) flywheels have slow
transients, but smooth, steady output
We can use a flywheel to estimate the
average of the Q values

Stochastic Approximation Theory Sez:

Flywheel-like updates of Q converge with
probability one if

Which is true for online averaging, but not for
flywheel updates with fixed α
However, we often use fixed α, to cope with
nonstationarities, particularly in the dynamic
problems we’ll cope with later

() () 2

1 1

,
a a

a a
k k

k kα α
∞ ∞

= =

= ∞ < ∞⎡ ⎤⎣ ⎦∑ ∑

