Take Home Messages

Traditional Vs. Neural Computation
* Traditional:

— serial

— damage intolerant

— programmed

— specific, precise input-output behavior
* Neural

— massively parallel

— damage tolerant

— trained

— approximate, generalization behavior

Early NNs

* McCullugh-Pitts demonstrates a logical
calculus in a neural net
— excitatory and inhibitory connnections
— logical implications
— memory cells (reccurrent connections)

¢ Hebb

— weight training as the mechanism of learning

Single Layer Nets
(Perceptrons)

* The idea of decision surfaces is key!

A single layer net (regardless of node
function) has inherent limitations

Mutli-Layer Nets

* “Three” (aka “Two”) layers + nonlinear
hidden node functions is sufficient for any
mapping...

* given sufficient numbers of hidden layer
nodes.

The Delta Rule

» Update each weight by taking steps in the
negative gradient direction, with respect to
that weight...

* In it’s multi-layer form, this gives the
backpropagation algorithm

* This is the most widely used NN training
algorithm

The most common NN

e Three layers
— sufficient
 Sigmoidal node functions
— continuous approximations of thresholds
— can form “activation bumps”
* Fully connected layers (feed forward)
* backpropagation

— well founded in the calculus

The most common NN
problems

» Three layers
— sufficient, but with how many hidden layer
nodes?
* backpropagation
— can be too slow with large, fully-connected nets
— can get stuck in local minima

Generalization...

* Finding “good” training data is the key.
* Overfitting:

— great on training data, terrible on everything
else

— too many hidden layer nodes
¢ Underfitting;
— terrible on everything, including training data

— too few hidden layer nodes

Kohonen Networks

¢ Clustering, which amounts to

* mapping a high dimensional space to a
lower dimensional space

* this is so-called “unsupervised” learning

Self-Organizing Maps

* Mapping from a high dimensional space to
one of lower dimension,

* while maintaining “gross” topology

» Understand the update rule, in terms of the
input space and the node space.

Radial Basis Functions

* Node functions where output is directly
dependent on some measure of distance
between the input and the nodes “center”

* This is a form of “receptive field”, allowing
for “spatially localized learning”

— less “forgetting”
— faster (training and execution)

Note...

» Each of the things we’ve covered:
— sigmoidal nodes, linear nodes, BP, SOM, RBF
« are all design tools, not necessarily end
products

One thing we didn’t cover
(well, lots of things, really)

* Recurrent connections
* Remember the McCulloch-Pitts Memory

Cell:
LN

X2 > T=1

3-1/’

> o(k+1) = x1(k)

Recurrent Networks for
Internal Memory

* Couldn’t be simpler...

Inputs [Hidden Layer

Output Layer —

Recurrent Networks for
Internal Memory

* Couldn’t be more complicated
[Hidden Layer

Note that all outputs, and therefore all errors, and their deriv atives
depend on a recursive series of terms...so we use truncated
Backpropagation through time (BPTT)

Inputs Output Layer —>

Hopfield (“Settling”) Networks
for Optimization, Memory

[Output Layer

*And iterate until the network finds an equilibrium,
* Then the output is your solution
*Opinions offered here

* Apply inputs

Inputs

Other Uncovered Topics

* Support Vector Machines
— Largely networks with alternative formulations of the
hidden layer
* Boltzmann Machines
— Weight determination through simulated anealing (in
my opinion)
* Neurodynamic Programming
— Largely related to reinforcement learning theory

* Lots of other stuff, I’m sure

