Multilayer Networks

How do we get networks to do
more?

Thus far, we have considered:

%PERCEPTRONS: which can only learn
linearly-separable pattern
classifications

How can we expand network
capabilities?

¢Use more complex activation
functions? (won't help, really...)

#¢Use more layers? (will help...)

¢What are the capabilities of multilayer
neural networks?

#How many layers are necessary?

Multilayer networks and
function approximation:

£ Kolmogorov's Mapping Neural Network
Existence Theorem: Given
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fcan be implemented exactly by a
three layer neural network with (2n+1)
elements in its hidden layer

%This makes neural networks universal
function approximators.

Kolmogorov's Theorem...

#Can be extended to any bounded input set
#The theorem in itself should not be surprising
#Consider function approximation via series

% 0ne fascinating aspect is its indication that
three layers are enough

The proof is good news,
but....

# It gives us no idea of how to
determine what the activation
functions in the hidden and output
layers should be




Consider multilayer
perceptrons:

< Three layer perceptrons can form any convex (open
or closed) decision region

# The number of hidden nodes is an upper bound on
the number of sides of a decision region

# Four layer perceptrons can form any polygonal
decision region

< Three layers are sufficient for bounded input sets

Multilayer perceptrons:

#Rosenblat knew that with the appropriate
"input predicates”, a layer of perceptrons
could learn any categorization of input vectors

¢These input predicates are the outputs of the
hidden layer

¢However, he had no good algorithm for
training the weights into the hidden layer
(finding linearly separable input predicates)

Consider a continuous
perceptron...

% Note that this is a :
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Consider three layers of
continuous perceptrons:

A sum of two continuous perceptrons can
form an "activation bump" in the input space
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Using the bump...

¢Weights in the output layer can
transfer this activation bump to any
output value

% Note that sigmoidal output units
provide bounded output

¢Linear output units can provide
unbounded output

Q: How can we extend train
multilayer networks?

#We will show how this is done via the
backpropagation algorithm




For a moment, consider linear
activation functions...

#This is like a perceptron, without the
threshold
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¢Several layers of these don't do much,

since a sum of linear functions is
another linear function

Assume there is a “correct”
output, y

% Then, the square
error is

To minimize error

#By changing weights, find a point
where the gradient is zero:
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ow
#we can do this by taking steps in the
negative gradient direction...

Gradient Descent
#With respect to a weight:
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For linear activation...

F(whatever) = whatever,
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Gradient Descent
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For linear activation...

#It's (essentially) the perceptron
learning law...

Consider nonlinear activation
functions

# Which we need 3
layers of for
interesting nets...

% The square error in
the weight space is
now a multi-modal
function

% However, we can
still use gradient
descent

The Generalized Delta Rule

#We can take the derivative of the
square error with respect to any
weight in the network . . . .
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The Backpropagation
Algorithm

#is the computer implementation of the
generalized delta rule

#it gets its name from the way deltas
propagate backwards through the
network

¢appropriate deltas can be derived for
any number of layers

Advantages of
Backpropagation

%It is founded in the calculus

#1It is highly effective in a broad class of
problems

#Calculations are entirely local to each
neuron

£ Computer implementation is painfully
easy




Problems with
Backpropagation

#it is gradient descent over a
multimodal surface, therefore

&it can get stuck on local minima

#it can be slow

#every weight is updated every cycle
#it must take small steps...

#it is only approximate gradient descent
in the mean square error space

Next time....

%A good derivation of BP, to give...
#Computer implementation of backprop

% Modifications to make backprop work
better




