Multilayer Networks

How do we get networks to do
more?

Thus far, we have considered:

%PERCEPTRONS: which can only learn
linearly-separable pattern
classifications

How can we expand network
capabilities?

¢Use more complex activation
functions? (won't help, really...)

#¢Use more layers? (will help...)

¢What are the capabilities of multilayer
neural networks?

#How many layers are necessary?

Multilayer networks and
function approximation:

£ Kolmogorov's Mapping Neural Network
Existence Theorem: Given

SI01] > 9", 1 (%)=

fcan be implemented exactly by a
three layer neural network with (2n+1)
elements in its hidden layer

%This makes neural networks universal
function approximators.

Kolmogorov's Theorem...

#Can be extended to any bounded input set
#The theorem in itself should not be surprising
#Consider function approximation via series

% 0ne fascinating aspect is its indication that
three layers are enough

The proof is good news,
but....

It gives us no idea of how to
determine what the activation
functions in the hidden and output
layers should be

Consider multilayer
perceptrons:

< Three layer perceptrons can form any convex (open
or closed) decision region

The number of hidden nodes is an upper bound on
the number of sides of a decision region

Four layer perceptrons can form any polygonal
decision region

< Three layers are sufficient for bounded input sets

Multilayer perceptrons:

#Rosenblat knew that with the appropriate
"input predicates”, a layer of perceptrons
could learn any categorization of input vectors

¢These input predicates are the outputs of the
hidden layer

¢However, he had no good algorithm for
training the weights into the hidden layer
(finding linearly separable input predicates)

Consider a continuous
perceptron...

% Note that this is a :
continuous 1

approximation to a wl/
H 06

threshold...

- 1 04
S(R)=—= J/
I+e

4 this is called a 50 5 0 5 0 %
sigmoid

weighted sum of inputs

Consider three layers of
continuous perceptrons:

A sum of two continuous perceptrons can
form an "activation bump" in the input space

[} —— 1 §
[
8- 1]
[
05 H @ — |

P S LT O

0 4§ 05 06
andwegtedit wighed s i veigedsn ol

Using the bump...

¢Weights in the output layer can
transfer this activation bump to any
output value

% Note that sigmoidal output units
provide bounded output

¢Linear output units can provide
unbounded output

Q: How can we extend train
multilayer networks?

#We will show how this is done via the
backpropagation algorithm

For a moment, consider linear
activation functions...

#This is like a perceptron, without the
threshold

— — T —
f (x) =W X
¢Several layers of these don't do much,

since a sum of linear functions is
another linear function

Assume there is a “correct”
output, y

% Then, the square
error is

To minimize error

#By changing weights, find a point
where the gradient is zero:
v.e=%_9
ow
#we can do this by taking steps in the
negative gradient direction...

Gradient Descent
#With respect to a weight:

e b-r®)] A/ ®)]
8w ow, (S)) ow,

1 1

£assume

[(X)=F(w'%)

Then...

OE

[f(X)]
L (- @)=

i 1

0 F(W;e) o[w'% |

20O -

2(y-1()

8(w X

ol F(w"

X) |

o(Wx)

For linear activation...

F(whatever) = whatever,

OE _
o 2(y=f(@)x,

1

Gradient Descent

pvy - E_
Wi
L O| F(W'X) } 400
C(y‘f(x))[q—rql@ W V:G:x"o,,
a(w x) 4\ “«'W
Aw=—cV E =
o[F('%)]

C()"f@))mx

For linear activation...

#It's (essentially) the perceptron
learning law...

Consider nonlinear activation
functions

Which we need 3
layers of for
interesting nets...

% The square error in
the weight space is
now a multi-modal
function

% However, we can
still use gradient
descent

The Generalized Delta Rule

#We can take the derivative of the
square error with respect to any
weight in the network
oF

) L O[FGV)]
Ey —2(y—f(x))Wxi

The Backpropagation
Algorithm

#is the computer implementation of the
generalized delta rule

#it gets its name from the way deltas
propagate backwards through the
network

¢appropriate deltas can be derived for
any number of layers

Advantages of
Backpropagation

%It is founded in the calculus

#1It is highly effective in a broad class of
problems

#Calculations are entirely local to each
neuron

£ Computer implementation is painfully
easy

Problems with
Backpropagation

#it is gradient descent over a
multimodal surface, therefore

&it can get stuck on local minima

#it can be slow

#every weight is updated every cycle
#it must take small steps...

#it is only approximate gradient descent
in the mean square error space

Next time....

%A good derivation of BP, to give...
#Computer implementation of backprop

% Modifications to make backprop work
better

