Multilayer Networks How do we get networks to do more?

Thus far, we have considered:

PERCEPTRONS: which can only learn linearly-separable pattern classifications

How can we expand network capabilities?

- Use more complex activation functions? (won't help, really...)
- ◆Use more layers? (will help...)
- What are the capabilities of multilayer neural networks?
- How many layers are necessary?

Multilayer networks and function approximation:

Kolmogorov's Mapping Neural Network Existence Theorem: Given

$$f[0,1]^n \to \Re^m, f(\vec{x}) = \vec{y}$$

f can be implemented exactly by a three layer neural network with (2n+1) elements in its hidden layer

This makes neural networks universal function approximators.

Kolmogorov's Theorem...

- Can be extended to any bounded input set
- The theorem in itself should not be surprising
- Consider function approximation via series
- One fascinating aspect is its indication that three layers are enough

The proof is good news, but....

It gives us no idea of how to determine what the activation functions in the hidden and output layers should be

Consider multilayer perceptrons:

- Three layer perceptrons can form any convex (open or closed) decision region
- ◆ The number of hidden nodes is an upper bound on the number of sides of a decision region
- Four layer perceptrons can form any polygonal decision region
- Three layers are sufficient for bounded input sets

Multilayer perceptrons:

- Rosenblat knew that with the appropriate "input predicates", a layer of perceptrons could learn any categorization of input vectors
- These input predicates are the outputs of the hidden layer
- However, he had no good algorithm for training the weights into the hidden layer (finding linearly separable input predicates)

Consider a continuous perceptron...

Note that this is a continuous approximation to a threshold...

$$f\left(\vec{x}\right) = \frac{1}{1 + e^{-\vec{w}^T \vec{x}}}$$

this is called a sigmoid

Consider three layers of continuous perceptrons:

A sum of two continuous perceptrons can form an "activation bump" in the input space

Using the bump...

- Weights in the output layer can transfer this activation bump to any output value
- Note that sigmoidal output units provide bounded output
- Linear output units can provide unbounded output

Q: How can we extend train multilayer networks?

We will show how this is done via the backpropagation algorithm

For a moment, consider linear activation functions...

This is like a perceptron, without the threshold

$$f(\vec{x}) = \vec{w}^T \vec{x}$$

Several layers of these don't do much, since a sum of linear functions is another linear function

Assume there is a "correct" output, y

Then, the square error is

$$E = (y - f(\vec{x}))^{2} = (y - \vec{w}^{T} \vec{x})^{2}$$

To minimize error

By changing weights, find a point where the *gradient* is zero:

$$\nabla_{\vec{w}} E = \frac{\partial E}{\partial \vec{w}} = 0$$

we can do this by taking steps in the negative gradient direction...

Gradient Descent

With respect to a weight:

$$\frac{\partial E}{\partial w_i} = \frac{\partial \left[\left(y - f(\vec{x}) \right)^2 \right]}{\partial w_i} = -2 \left(y - f(\vec{x}) \right) \frac{\partial \left[f(\vec{x}) \right]}{\partial w_i}$$

assume

$$f(\vec{x}) = F(\vec{w}^T \vec{x})$$

Then...

$$\frac{\partial E}{\partial w_{i}} = -2\left(y - f(\vec{x})\right) \frac{\partial \left[f(\vec{x})\right]}{\partial w_{i}} =$$

$$-2\left(y - f(\vec{x})\right) \frac{\partial \left[F(\vec{w}^{T}\vec{x})\right]}{\partial \left(\vec{w}^{T}\vec{x}\right)} \frac{\partial \left[\vec{w}^{T}\vec{x}\right]}{\partial w_{i}} =$$

$$-2\left(y - f(\vec{x})\right) \frac{\partial \left[F(\vec{w}^{T}\vec{x})\right]}{\partial \left(\vec{w}^{T}\vec{x}\right)} x_{i}$$

For linear activation...

$$F(whatever) = whatever, \qquad \therefore$$

$$\frac{\partial E}{\partial w_i} = -2(y - f(\vec{x}))x_i$$

Gradient Descent

$$\Delta w_{i} = -c \frac{\partial E}{\partial w_{i}} = c \left(y - f(\vec{x}) \right) \frac{\partial \left[F(\vec{w}^{T} \vec{x}) \right]}{\partial \left(\vec{w}^{T} \vec{x} \right)} x_{i}$$
$$\Delta \vec{w} = -c \nabla_{\vec{w}} E = c \vec{v}$$

$$\Delta \vec{w} = -c\nabla_{\vec{w}} E = c\left(y - f(\vec{x})\right) \frac{\partial \left[F(\vec{w}^T \vec{x})\right]}{\partial \left(\vec{w}^T \vec{x}\right)} \vec{x}$$

For linear activation...

It's (essentially) the perceptron learning law...

$$\Delta w_i = -c \frac{\partial E}{\partial w_i} = c \left(y - f(\vec{x}) \right) x_i$$

$$\Delta \vec{w} = -c \nabla_{\vec{w}} E = c (y - f(\vec{x})) \vec{x}$$

Consider nonlinear activation functions

- Which we need 3 layers of for interesting nets...
- The square error in the weight space is now a multi-modal function
- However, we can still use gradient descent

The Generalized Delta Rule

•We can take the derivative of the square error with respect to any weight in the network

$$\frac{\partial E}{\partial w_i} = -2\left(y - f(\vec{x})\right) \frac{\partial \left[F(\vec{w}^T \vec{x})\right]}{\partial \left(\vec{w}^T \vec{x}\right)} x_i$$

The Backpropagation Algorithm

- is the computer implementation of the generalized delta rule
- it gets its name from the way deltas propagate backwards through the network
- appropriate deltas can be derived for any number of layers

Advantages of Backpropagation

- It is founded in the calculus
- It is highly effective in a broad class of problems
- Calculations are entirely local to each neuron
- Computer implementation is painfully easy

Problems with Backpropagation

- it is gradient descent over a multimodal surface, therefore
- it can get stuck on local minima
- ◆it can be slow
- *every weight is updated every cycle
- ♦it must take small steps...
- it is only approximate gradient descent in the mean square error space

Next time....

- A good derivation of BP, to give...
- Computer implementation of backprop
- Modifications to make backprop work better