
What are Neural Networks?.....

and why am I bothering to study them, anyway?

Consider traditional, serial computers...

- "Von Neumann" architectures
- Single, complex CPU
- Processes one instruction at a time
- Operates on one chunk of data at a time

Methods to obtain greater power in serial computers:

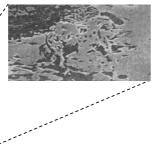
- Increase the size of memory chunks operated on (vector processing)
- Reduce instructions necessary for each computational task (RISC architectures)
- Pump up the clock speed (supercomputers)
- Increase the complexity of what's done per clock step (math coprocessors)

Problems with serial computation

- limits of practical speed-up have nearly been reached
- despite this fact, serial computers remain incapable of many valuable tasks

Parallel Computers

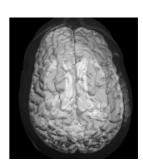
- Many Von Neumann style computers, operating in parallel, and talking to one another.
- Although parallelism yields significant speed-up on some tasks:
 - communication overhead becomes a problem
 - it as proved difficult to parallelize many serial algorithms


Consider object recognition

• in arbitrary, noisy settings....

Pattern Recognition and... Art Appreciation

Tasks that don't easily yield to traditional computers:


- object detection in complex environments
- control of complex (time-varying) systems
- hand-written character and symbol recognition
- · language understanding
- · distinguishing signals from noise
- learning from experience
- · recovery from damage

Interestingly....

- these tasks are of the sort that living organisms solve easily (in some cases, instantaneously)
- Q: Why?
 - A: Magic?
 - A: Differences in the way computation is performed (hardware and software)

Hardware and software in organic brains

Brains are composed of many, simple processors operating in parallel on lots of small packets of low-level data at relatively slow speeds (1 Khz)

A Word of Caution:

- Artificial Neural Systems are very rough (perhaps incorrect) models of Living Neural Systems!
- However, despite possible errors in modeling real neurons, ANSs may contain important features of all massively parallel distributed computing systems.

The Scale of The Human Brain:

- The human brain contains on the order of a trillion neurons
- On average, a neuron has on the order of 10,000 synapses (connections to other neurons)...
- Giving on the order of 10 quadrillion connections!

Parts of the Brain:

- Cerebral Hemisphere: Higher Brain Functions
- Upper Brain Stem: Regulation
- Middle Brain Stem: Visual and Auditory Reflexes
- Lower Brain Stem: Critical Reflexes

The Cerebral Hemisphere

- Is arranged into distinct, 2-D layers
- This sheet-like structure is divided into distinct "lobes" that relate to specific functions;
 - Frontal Lobe: Planning
 - Parietal Lobe: Abstract Reasoning
- Temporal Lobe: Auditory Processing
- Ocipital Lobe: Visual Processing

Neuron Structure:

- · Neurons consist of
 - a body (the soma),
 - a set of input lines (the dendrites), and
 - a single output line (the axon)

Connections

- Dendrites spread out into a tree that receives a great many inputs from axons of other neurons, through terminals (synapses)
- Axons are from 100 micrometers to 1 meter long!

Synapses

- Synapses send electrochemical signals that alter the "activation" potential of the receiving neuron
- Two types of synaptic effects:
 - Excitatory connections, which raise potential and promote firing
 - Inhibitory connections, which lower potential and discourage firing

Mechanism of Neuron Firing:

- In its rest state, a synaptic terminal is permeable to potassium ions, that flow out and create a -70mV resting potential
- Activation builds up at synaptic terminals

Firing...

• When activation (within a certain time) passes a internally-defined threshold, the membrane becomes permeable to potassium ions, that flow in an create a +35mV pulse, which is sent down the axon

Neuron mechanisms continued...

- After the pulse, K+ ions flow out, causing a drop of potential beneath the resting potential
- After "firing", the neurons internal "pumps" return ion balance
- This is where the neuron consumes energy
- The neuron takes about a millisecond to be ready to fire again (Speed of 1 kHz!)

Avoiding Anthropomorphism:

- What are lower animal brains like:
- Reflex Nets: in animals like the hydra
 - sensors to neurons to muscles (no interconnect)
- Primitive Associative Nets: in flatworms
 - interconnects, no CNS

Simple Brains, continued

- · Primitive CNSs: in earthworms
 - bundles on interconnected neurons centralized
- Primitive differentiated CNSs and peripheral nervous systems: in insects
 - CNS and PNS consist of different types of neurons

Neural Networks (aka Connectionism)

- Is an attempt to get machines to do the tasks brains do well (and typical computers do poorly) through abstraction of low-level brain function
- Is an attempt to understand brain function through simplified computer simulation

Neural Network Terminology:

- Artificial "Neurons" are also called "Nodes" or "Units"
- Nodes are connected in "Layers"
- Outputs of units in one layer are inputs to another layer
- Units compute a simple function (the "Unit Function" over there inputs to determine there output

Training

- Rather than being programmed, most neural nets are trained
- Inputs to each node are assigned "weights"
- In training, examples of correct inputoutput behavior are provided to the network

More Training

- Weights are adjusted by a learning algorithm to bring network behavior in line with the behavior indicated by examples
- It is hoped that the network will "generalize" from the examples to broadly accurate behavior.

Implementing Neural Networks

- Most NNs are implemented in digital simulators on serial computers
- However, NNs are ultimately best implemented on special purpose hardware
 - Digital NN chips (currently available, with some size and speed limitations)
 - Analog NNs (yielding analog speed)

More Terminology

- Supervised Learning
 - Learning with a teacher that provides solved examples
- · Reinforcement Learning
 - Learning with a teacher that provides only rewards and punishment
- Unsupervised Learning
 - Learning without a teacher (internally defined goals)

Next Time:

- Given neurons as binary, temporal computational devices, how do we perform useful computations with a group of them?
 - McCullogh-Pitts Neuron Models
- How do Neural Nets Learn?
 - Hebbian weight adjustment
- Our first "real" neural net:
 - percetrons