Details of Backprop

Plus Advice and Modifications

A little more derivation

$$\frac{\partial E}{\partial w_i} = -2(y - f(\vec{x})) \frac{\partial [F(\vec{w}^T \vec{x})]}{\partial (\vec{w}^T \vec{x})} x_i$$

A multilayer net...

For weights in the output layer...

≥ Clearly...

$$\frac{\partial E}{\partial w_a} = -2(y - f(\vec{x})) \frac{\partial [F(\bullet)]}{\partial (\bullet)} x_a$$

but what about the other layer, the "hidden" layer?

For weights in hidden layers:

$$\frac{\partial E}{\partial w_{\text{hidden}}} = -2(y - f(\vec{x})) \frac{\partial \left[F(\vec{w}_{\text{output}}^T \vec{x}_{\text{hidden}}) \right]}{\partial \left(\vec{w}_{\text{output}}^T \vec{x}_{\text{hidden}} \right)} \frac{\partial \left[\vec{w}_{\text{output}}^T \vec{x}_{\text{hidden}} \right]}{\partial \left(w_{\text{hidden}} \right)} =$$

$$-2(y-f(\vec{x}))\frac{\partial \left[F(\vec{w}_{\text{output}}^T x_{\text{hidden}})\right]}{\partial \left(\vec{w}_{\text{output}}^T x_{\text{hidden}}\right)}\frac{\partial \left[\vec{w}_{\text{output}}^T x_{\text{hidden}}\right]}{\partial (w_{\text{hidden}})} =$$

$$-2(y-f(\vec{x}))\frac{\partial \left[F(\vec{w}_{\text{output}}^T x_{\text{hidden}})\right]}{\partial \left(\vec{w}_{\text{output}}^T x_{\text{hidden}}\right)}\frac{\partial \left[\vec{w}_{\text{output}}^T x_{\text{hidden}}\right]}{\partial \left(w_{\text{hidden}}\right)} =$$

$$-2(y-f(\vec{x}))\frac{\partial \left[F(\vec{w}_{\text{output}}^T F(\vec{w}_{\text{hidden}}^T \vec{x}))\right]}{\partial \left(\vec{w}_{\text{output}}^T F(\vec{w}_{\text{hidden}}^T \vec{x})\right)}w_{\text{output}}\frac{\partial \left[F(\vec{w}_{\text{hidden}}^T \vec{x})\right]}{\partial \left(\vec{w}_{\text{hidden}}^T \vec{x}\right)}x$$

The BP Trick...

Let's call W_i the updates for the weights in layer j, A_i , the input to this layer, a the actual network output, and $F_{i'}$ the derivative of the activation function

≥ Let's say

$$\Delta W_{i} = c\vec{\Delta}_{i} \vec{x}_{i}^{T}$$

Backpropagating the deltas...

- Fast and loose notation here...
- For the output layer (j=N)

$$\vec{\Delta}_N = (\vec{y} - \vec{a}) F_N$$

for all other layers

$$\vec{\Delta}_{j} = W_{j+1}^{T} \vec{\Delta}_{j+1} F_{j}$$

Cool Trick for Sigmoids

₽₽If

$$F(A) = \frac{1}{1 + e^{-A}}$$

₽₽then

$$\frac{\partial F(A)}{\partial A} = (1 - F(A))F(A)$$

So,

- ² Computer implementations of backprop, particularly with sigmoidal or linear units, or a mix of the two, are very easy to program...
- And 3 layer nets with BP should be very capable...

However...

- How do we represent inputs (how many input units)?
- *How do we represent outputs (how many output units)?
- What's a good learning rate?
- How many hidden neurons are necessary?

Note:

- There are two basic applications of NNs we have discussed:
 - Categorization: which needs binary output that is appropriate for sigmoidal output units
 - Function Approximation: which needs output that is appropriate for linear output units

How to represent data:

- Any data set can be represented in sparse or dense format. . .
- In a neural net, a dense encoding means fewer weights.
- This means less computation.
- A sparse encoding means less "cross talk", which may lower training time.

What Learning Rate Should We Use?

- Clearly, the learning rate is critical to the progress of gradient search . . .
- However, for multilayer networks, there is no clear-cut guidance for setting learning rates
- ≥ Values between .001 and 10 are typical

The Momentum Method

- This is another heuristic scheme for "smoothing" gradient descent in backprop
- It updates the weights with a decaying average of previous weight updates
- The momentum method often results in fast convergence in incremental training, and can also help in batch training

How Many Hidden Units?

- **Kolomogorov's theorem gives us a somewhat artificial bound for function approximating networks
- **However, determining the actual number of units needed is in general, a key craft in designing neural nets...

In Function Approximation:

- The number of hidden units effects the complexity of the approximating function, therefore:
 - With too few nodes, we can have underfitting
 - With too many nodes, we can have overfitting

Other Backprop Tips:

- Random Restarts
- № Noisy inputs
- Incrementally reducing error tolerances
- Adjust the number of hidden units
- These are all heuristics for problems that face all local optimization schemes
- Later in the class we will examine other, more global search processes

What to use as input:

- Sometimes the key to analyzing any data is appropriate pre-processing
- For Example:
 - Feature Extraction
 - Data Transformation (i.e. Fourier Transform)
 - Time Delayed Inputs

Feature Extraction:

- Consider extracting meaningful features from handwritten characters (Burr 1988)
- Apply a bilinear map to place the character in a standard grid
- ™Map points on the character to nearest regions of a template
- Assign indices to different template configurations to construct inputs
- 90-98% efficiency is obtained with this method

More Feature Extraction

- Consider distinguishing rocks and cylinders in sonar signals (Gorman & Sejnowski, 1985)
- Trained people are up to 93% accurate
- ≥ 100 training examples
- ≥ 60 expert-extracted features
- ≥ 12 hidden units yield 92% accuracy

Data Transformation

- Consider speech recognition: distinguishing b,d,e,v on a noisy line (Lang, 1987)
- People get 96% correct
- ≥ 700 sample of 150 millisecond data
- Apply 16 band FFT, over 12 time slices, for length 192 input vectors
- *4 output nodes, and one hidden unit, yield 93% accuracy

Time Delayed Inputs

- Consider mapping ASCII text to phonemes, to drive a voice generator (Sejnowski & Rosenberg, 1985)
- 29 characters to 21 phonemes a 5 stresses
- Input is seven characters, each with a one step delay, to map the middle character
- Trained with DECtalk, and expert system
- №80 hidden units

Next Time

Self-organizing maps (something completely different)