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The Gaussian Channel
Information Theory Lecture 8b

Let’s consider a channel
Which delivers real (continuous) values
In real time
And has real noise

Real channels have real costs, in terms of 
maximum power
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How to send information
Think of the signal being comprised of a 
superposition of orthonormal basis 
functions

We can encode a set of n real numbers by 
setting the amplitudes of these basis 
functions at the sending end
And taking a Fourier transform at the 
other end
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The common basis functions
Let’s assume we get 
white noise (0 mean 
Gaussian noise) in the 
channel

Then, the transform at 
the output yields
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Limited Power
Recall
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Limited Bandwidth
If the highest frequency present in a signal is W, 
then we can figure the amplitude of that 
frequency by a Nyquist sampling interval of

This means for our time interval of T, the 
maximum number of orthogonal basis functions 
is
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The relationship
Between a real, continuous time channel 
and a discrete time Gaussian Channel
The use of a real continuous channel is 
equivalent to 2W uses per second of a 
Gaussian Channel with the same noise 
level and power constraint
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Discrete time
Let’s assume we are using a code where 
we send a vector of real numbers to 
represent a single bit in one time step
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Consider a discriminator
Based on the a posteriori probability ratio
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We can use a linear discriminator
Based on the log of the a posteriori ratio
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Channel Capacity
Remember that the channel capacity is 
found by maximizing the mutual 
information between the input and the 
output

But we also have to consider the power 
constraint
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Lagrange Multipliers
A trick to maximize 
constrained functions
Basically, you subtract a 
term to represent the 
constraint
Since the gradient of both 
terms has to be zero and 
the maximum, this 
generally works
The λ is included to 
balance the effects of both 
terms, and is itself a 
variable
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Therefore
To enforce the power constraint and keep 
P(x) a probability distribution
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Given that this is a Gaussian Channel
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Therefore, P(y) and thus P(x), are Gaussian 
for the maximum mutual information

Given the best input distribution
In terms of maximum mutual information 
is Gaussian
Let’s say it has variance ν, and therefore 
the output has standard deviation ν+σ2
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The Capacity of a Gaussian Channel
Is therefore given by

The last term, the ratio of the signal and 
noise variances, is also the ratio of their 
power, and is called the signal-to-noise 
ratio (SNR)
This important quantity is usually 
measured in decibels
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Decibels
A few useful conversions

And standards:
For audio, P1 is for 1mW in 600 Ohms
For Radio/TV, P1 is for 1mW rms in 75 Ohms
For Radio frequency, P1 is for 1mW in 50 Ohms 
or 1μV/m field strength
Radio engineers use dBm (1mW) or dBu (1μV)
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Back to continuous time
Recall that he use of a real continuous 
channel is equivalent to 2W uses per 
second of a Gaussian Channel with the 
same noise level and power constraint

Substituting into the channel capacity
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How to transmit
Let’s look at 
bandwidths and 
relative to a standard 
SNR

So, it’d be good to 
take tons of 
bandwidth, at low 
power
However, it will tick 
off your neighbours!
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Take Home Messages
Real channels send information in 
orthonormal basis functions
This transmission is limited by power and 
bandwidth
Looking at the discrete time Gaussian 
Channel, the power limited channel 
capacity is defined in terms of SNR
We can relate this back to the continuous 
time channel


