
1

Independent Component
Analysis

Information Theory Lecture 8a

And now for something completely
different…

Thus far, we’ve focused on taking a single
signal, encoding it, and then decoding it
Now we are going to concentrate on splitting
apart two of more signals that have been
combined
We are going to do this while making some
quite robust assumptions about the signals
involved…

Let’s say we have two simultaneous signals
that have been recorded by two
microphones

The signals (we don’t have these) The recordings we have

()
()
()

1 11 1 12 2

2 21 1 22 2

x t a s a s

x t a s a s

t

= +

= +

=x As

We call the s values “latent variables”

We’re going to assume that the latent
variables are statistically independent
It means that information about one of the s
values gives you no information about
another s value
This is a stronger property than being
uncorrelated

Statistical Independence
()

() (){ } () () ()

() () ()

() ()
(){ } (){ }

1 2 1 2

1 2

1 2

1 2

, () ()

,

()

() ()

P X Y P X P Y

E f x f y f x f y p x y dxdy

f x p x f y p y dxdy

f x p x dx f y p y dx

E f x E f y

=

=

=

=

=

∫ ∫
∫ ∫
∫ ∫

This means any statistics we gather about the joint variables
we could have just gathered about the separate variables

Or, seen another way, statistics about x tell us nothing about y, and vice versa

Uncorrelated does not mean independent

We say two variables are uncorrelated if their
covariance is zero

Consider the uncorrelated samples
(0,1),(0,-1),(1,0),(1,-1)

The variables are uncorrelated, but not statistically
independent

() { } { } { }, 0C x y E xy E x E y= − =

{ } { } { }
{ } { } { }2 2 2 2

0
1

4

E xy E x E y

E x y E x E y

− =

− = −

2

Limitations of ICA

Since both s and A are unknown, we
absolutely cannot determine the variances of
the s values
These are only defined up to a multiplier
We’ll assume the variances are all one
We also can’t determine which signal came
from which microphone

In the ICA algorithm

We are going to assume that the variables
are zero mean
And we’ve assumed the variances are all one
So, if our signals were gaussian, we’d have
nothing to work with
So, we assume that the s values are
independent, and non-gaussian

The opposite of what we usually do

The ICA approach is based
on minimizing the mutual
information between the s
values
A fact that helps here

For a given variance, a
Gaussian variable has the
maximum entropy of all
possible distributions

So, our requirement here is
like maximizing the sum of
the departure of the H(s)
values from Gaussinaity

() () () ()

() ()

() ()

1

1

1

1

log det

N

j

N

j

N

j

I I H s H

H s H

H s H

−

=

=

=

= = −

= − −

= −

∑

∑

∑

s A x s

x A

x

The Negentropy

Is defined as

Where z is a Gaussian random variable with
the same variance as s
So, this is the quantity we want to maximize
for ICA
But we have to approximate it…

() () ()J s H z H s= −

A good statistical approximation

Of negentropy

Where G is any non-quadratic
A well-conditioned choice is

() (){ } (){ } 2
J s E G s E G z⎡ ⎤= −⎣ ⎦

() ()logcoshG s s=

Preprocessing

There are a few things we should do to the x
data before we apply ICA

Centering: we subtract the mean from the data to
give a new x that is zero mean
Whitening: we apply a linear transformation to
give a new x that is uncorrelated and has variance
of one

Whitening makes sure that A is orthogonal

3

Whitening

Our new data will have the property

We can find the appropriate values through
eigenvalue decomposition

{ }ˆ ˆE =Txx I

{ }
1/ 2ˆ

E
−

= Λ

= Λ

T T

T

xx E E

x E E x

A side benefit

At the whitening stage, we could discard
components of the whitened x that
correspond to low eigenvalues
This is very similar to what is done in
principle component analysis, a data
compression scheme

FastICA

Is a version of the ICA algorithm that can also
be described as a neural network
Let’s look at a single neuron in this network

G(wTx)
W

x s

As in neural networks

We are going to update weights to take
downhill steps in error
In this case, the steps are in the (the negative
of) negentropy (uphill is better)
We need the derivative of our G function with
respect to it’s argument

() ()' tanhG s s=

FastICA for one neuron

Set the weight vector to random values
Until convergence:

(){ } (){ }'E G E G+

+

+

= −

=

T Tw x w x w x w

ww
w

For several neurons (several signals s)

We can do the same algorithm as before on
each neuron
We have to make sure that all the neurons
don’t go to the same weight vector (signal)
We must de-correlate after each update
One method:

Repeat to convergence:

/= TW W WW

3 1
2 2

= − TW W WW W

4

Example: Magnetoencephalography
(MEG)

A noninvasive technique for monitoring brain
activity, via sensors on the scalp
Problem: signals include muscle twitches,
blinking, eye movement, heartbeat
This was simulated by telling a patient to
saccade eyes, then blink, then bite

Results

Example: Cash Flow in Chain Stores Image Reconstruction
original original + noise

ICA Weiner filter

Take home messages

ICA relies on the assumption of
Statistically Independent underlying signals
That are non-Gaussian
zero mean and fixed variance

The algorithm involves
minimizing mutual information between signals
which leads to maximizing non-gaussinaity
which leads to minimizing negentropy
which is approximated
which results in a NN-like update algorithm

