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More regarding noisy 
channels
Information Theory Lecture 5b

Let’s review what we know about 
entropies of two or more variables

The joint entropy of 
X,Y is
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Conditional Entropy
Of X given y=b is the entropy of the 
probability distribution P(x|y=b)

This is the information that remains in X after 
y is known to be b
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Condition entropy
Of X given Y is the average of the previous 
expression, over all possible values of y

This is the information that remains in X after 
we know Y in general
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Chain rule for entropy
Relating the three previous expressions

The information available in X and Y is the 
information in X plus the information in Y
given X
or vice versa
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Mutual information
Between X and Y

I(X:Y) = H(X) – H(X|Y) = I(Y:X)
I(X:Y) ≥ 0

This measures the average information 
obtained about x given y, or vice versa
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Conditional Mutual Information
Between X and Y given z = C

Averaging over all possible values of Z
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The relationship

H(X,Y)

H(X)

H(Y)

H(X|Y) I(X;Y) H(Y|X)

Let’s return to the noisy channel
The sender inputs symbol x, and we receive 
symbol y
Our job is to infer x given y

But we also want to characterize average 
rates through this channel
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The Capacity of a Channel Q
Is defined as the 
maximum information 
we can convey about x
by reading y
We can accomplish this 
by picking the best 
probability distribution 
over x (coding)
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The Noisy Typewriter Channel
Consider a typewriter that sends one of 27 
characters (A,B,…,Z,-)
The letters are arranged in a circle, and the 
typist can “miss” and hit the higher or the 
lower character
We can send information perfectly by only 
using every third character on the typewriter

Shannon’s Noisy Channel Coding 
Theorem

Associated with each discrete, memoryless
channel there is a non-negative capacity C
(called the channel capacity) with the 
following property:
For any ε>0 and R<C there is a block code 
with block length N and rate ≥ R and a 
decoding algorithm such that the maximal 
probability of block error is < ε
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For the noisy typewriter

Zero, in this caseMaximal probability of block error < ε

Map the received letter to the nearest code 
letter

Decoding algorithm

The block code only using every third 
character will require 3 characters to 
convey any one, so the rate is log2(27/3)

Block code of length N

We only need block length of N=1ε and R

log2(27/3)Channel capacity C

How it applies to the noisy typewriterThe Theorem

Another version of the proof
(not offered here)
Like in the noisy typewriter, we could 
consider blocks at x that map to non-
overlapping y
We then measure the density of these blocks 
in the possible input space
This gives rate

Pattern Recognition as Noisy 
Communication

Let’s say we want to send symbols 
Ax={0,1,2,3,4,…9}
By writing characters in a 16 by 16 pixel box
The input space is Ax

The output space is Ay = {0,1}256

Our approach to pattern recognition is 
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Beyond perfection
If a bit-probability of 
error pb is acceptable, 
rates of up to R(pb) can 
be achieved

Rates higher than this 
cannot be achieved
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