More regarding noisy channels

Information Theory Lecture 5b

Let's review what we know about entropies of two or more variables

 \Box The joint entropy of X, Y is

$$H(X,Y) = \sum_{xy \in A_x A_y} P(x,y) \log \frac{1}{P(x,y)}$$

$$H(X,Y) = H(X) + H(Y) \text{ iff } P(x,y) = P(x)P(y)$$

Conditional Entropy

 \Box Of X given y=b is the entropy of the probability distribution P(x|y=b)

$$H(X | y = b) = -\sum_{x \in A_t} P(x | y = b) \log(P(x | y = b))$$

☐ This is the information that remains in *X* after *y* is known to be *b*

Condition entropy

□ Of X given Y is the average of the previous expression, over all possible values of *y*

$$H(X|Y) = -\left[\sum_{y \in A_{y}} P(y) \sum_{x \in A_{z}} P(x|y=b) \log(P(x|y=b))\right]$$

$$= -\sum_{xy \in A_x A_y} P(x, y) \log(P(x \mid y))$$

 \square This is the information that remains in X after we know Y in general

Chain rule for entropy

□ Relating the three previous expressions

$$H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$

- \square The information available in X and Y is the information in X plus the information in Y given X
- □ or vice versa

Mutual information

- \square Between X and Y
 - I(X:Y) = H(X) H(X|Y) = I(Y:X)
 - $I(X:Y) \ge 0$
- \square This measures the average information obtained about x given y, or vice versa

Conditional Mutual Information

 \square Between *X* and *Y* given z = C

$$I(X;Y|z=C) = H(X|z=c) - H(X|Y,z=C)$$

 \Box Averaging over all possible values of Z

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$$

The relationship			
	H(X,Y)		
H(X)			
	H(Y)		
H(X Y)	I(X;Y)	H(Y X)	

Let's return to the noisy channel

- \Box The sender inputs symbol x, and we receive symbol v
- \Box Our job is to infer x given y

$$P(x | y) = \frac{P(y | x)P(x)}{P(y)} = \frac{P(y | x)P(x)}{\sum_{x'} P(y | x')P(x')}$$

□ But we also want to characterize average rates through this channel

The Capacity of a Channel Q

- □ Is defined as the maximum information we can convey about x by reading y
- by picking the best probability distribution over x (coding)

by reading
$$Y$$

We can accomplish this $C(Q) = \frac{\max}{P_x} I(X;Y)$

by picking the best

The Noisy Typewriter Channel

- □ Consider a typewriter that sends one of 27 characters (A,B,...,Z,-)
- □ The letters are arranged in a circle, and the typist can "miss" and hit the higher or the lower character
- □ We can send information *perfectly* by only using every third character on the typewriter

Shannon's Noisy Channel Coding Theorem

- □ Associated with each discrete, memoryless channel there is a non-negative capacity C (called the channel capacity) with the following property:
- \square For any $\varepsilon > 0$ and R < C there is a block code with block length N and rate $\geq R$ and a decoding algorithm such that the maximal probability of block error is $< \varepsilon$

For the noisy typewriter

The Theorem	How it applies to the noisy typewriter
Channel capacity C	log ₂ (27/3)
ε and R	We only need block length of N=1
Block code of length N	The block code only using every third character will require 3 characters to convey any one, so the rate is log ₂ (27/3)
Decoding algorithm	Map the received letter to the nearest code letter
Maximal probability of block error $\leq \epsilon$	Zero, in this case

Another version of the proof

- □ (not offered here)
- □ Like in the noisy typewriter, we could consider blocks at *x* that map to non-overlapping *y*
- ☐ We then measure the density of these blocks in the possible input space
- □ This gives rate

Pattern Recognition as Noisy Communication

- □ Let's say we want to send symbols $A_x = \{0, 1, 2, 3, 4, ... 9\}$
- □ By writing characters in a 16 by 16 pixel box
- \Box The input space is A_x
- \Box The output space is $A_v = \{0, 1\}^{256}$
- □ Our approach to pattern recognition is

$$P(x \mid y) = \frac{P(y \mid x)P(x)}{\sum_{x'} P(y \mid x')P(x')}$$

Beyond perfection

 \square If a bit-probability of error p_b is acceptable, rates of up to $R(p_b)$ can be achieved

$$R(p_b) = \frac{C}{1 - H_2(p_b)}$$

□ Rates higher than this cannot be achieved

