Dynamical Systems and
Information Theory

Information Theory Lecture 4

Let’s consider systems that evolve with
time

= Thatis, systems that can be X = F (Xt’xt—l’xt—z’
described as the evolution or
of a set of state variables

= Such evolution can be in d'x _
discrete or continuous " o (X)

= The former is governed by
difference or recurrence
equations, the later by
differential equations

| Some Vocabulary

n If Fis linear, the system X = F(Xt’xt—l’xt—Z"“)

is a linear system, or
likewise nonlinear

= The order of the system d—’f =F,(x)
is the number of dt
historical terms in the
difference equations, or
the highest order n in
the differential
equations

Differential equations in first-order form

_ d*x dx

= In general, a system of 0“’”?”’}”"‘
differential equations dx  b(de) k
can be converted to a i :;(EJ p

first order system
through the addition of

X
X =
variables [“%J

= Here’s an example for a J 0 1
second order, linear «x© :{ }x
’ k b,
system dt (/n) ( m)
X = Ax

| Eigenvalues and Eigenvectors

= Eigen is a German word, which roughly translates to
“characteristic”
= For a mathematical transformation of some vector of variables

o An eigenvector of the transformation is a characteristic shape for
that transformation

o An eigenvalue is a corresponding magnitude for that shape

= A transformation may have several eigenvalues and
eigenvectors

= Representing behaviors of transformations as a combination of
eigenvectors is a form of data compression

= We will examine eigenvalues and vectors in continuous
dynamical systems as an example

| An example

0=—mX +bx +kx

—_ At
= Consider solving a x=Ce
ordinary, linear x=2x
differential equation i=2x

= We solve by assuming 0= -mA’x+bAx +kx
a solution form ignoring the trivial x = 0 solution

= Which reduces to the 0=—mA* +bA +k

problem of finding _bb —dmk
eigenvectors A= m




| In first-order form

. X = Ax
= This is the standard u
. X =ce”
eigenvalue problem for ¢
A Ax = Ax
. ignoring the trivial x = 0 solution
= Solutions are the 0=A—Jl
igenval for th
eigenvalues for the 0=|a-1]

matrix (transformation)
A

= For a given A, the
solution for x in A x=Ax
is an eigenvector

[ In dynamical systems

m Eigenvectors (shapes) represent modes of
the characteristic (unforced) behavior of the
system

» Eigenvalues (magnitudes) are related to
these shape’s durations through time

| Behold the wonder of Euler

= Eigenvalues come in

complex conjugate e" =cost +isint

pairs (rroi) _ .
e =e (coswt +isinwt
» Thus ( )
a positive real parts for complex conjugate pairs

indicate growth (rroi)
. e
negative real parts
indicate decay
o Imaginary parts indicate
frequency of oscillation
n Of the associated
eigenvector (shape)

=e" (cos a)t)

[=)

In summary

= For a transformation, eigenvectors are characteristic shapes,
eigenvalues of their characteristic magnitudes

= For dynamical systems, these the durations through time of
modes of behavior

= We can describe continuous linear dynamical systems with a
matrix, via first order form

= Eigenvectors of this matrix indicate one of several characteristic
“shapes” of a dynamical systems evolution

= For corresponding eigenvalues:
o Positive real parts indicate that shape grows exponentially
o Negative real parts indicate that shape dies off exponentially

o Imaginary parts indicate the speed of oscillation around that
shape (“natural frequency”)

| Attractors

» In general, we can say that dynamical
systems have transient behavior (that which
dies out over time) and steady-state behavior

= Any steady state behavior is also known as
an attractor of that system

m Systems can also “diverge” (one of more of
their state variables can go to infinity)

| Three kinds of attractors

m Fixed points
o An equilibrium value of the state vector
m Periodic attractors
o A repeating sequence of state vector values
» Chaotic attractors
o A sequence that never diverges, but never
repeats (1?)
m Attractors can also be stable or unstable




Examining attractors

= As an experiment, let's
construct a matrix
describing a dynamical
systems behavior using the
method of delays

= This method allows is a
non-analytical way of
examining system behavior
without having to have the
system equations

= We can treat either discrete
or continuous systems with
this method

X =[x, 1%, 1% X ]

| Singular value decomposition

= |s a generalization of eigen \ O.
decomposition (which we’'ll o ==
talk about in more detail ! Z oO.
later) - J

» Let’s get the singular values J
oof X

= Then normalize them to 0-1

= The distribution indicates
the complexity of system
dynamics

n Let’s take the entropy of the
resulting distribution

H=-) o,logo,

Q=2"

An Example

» Let's consider a set of
particles connected
with nonlinear springs
and dampers

= We can think of this as
a sort of “particle
swarm”

= Let’s look at how Q
varies with the spring
and damper strength

|LOW.Q

= Motion in this figure is
largely right to left 4

» This is the case where 4
the long term behavior )
is for the particles to
“lock” and behave like a *=
single particle h

= Relative to the particle’s -
center of mass, this is a

o s w0 2

fixed point

“Medium” 2

n |s the situation where the
particles do not diverge, but
do not “coalesce”

n [tis likely that this is a
chaotic attractor (but |
haven’t technically proven
that) H

= We might call the behavior
“complex”, “emergent” or
“self organized”

= We'll look a bit more at
“complexity” measures

10
X position

| Symbolic Dynamics

m Let's assume that we are taking
measurements of a dynamical system in
discrete time, and that each measurement
results in one symbol from an alphabet A,
consisting of k possible symbols

m The underlying system might be a discrete or
continuous dynamical system

= With or without stochastic elements

n Note that we are brushing over details of
stochastic processes at this point




| Let’s consider a symbolic dynamical
system (Crutchfield and Shalizi)

= Generating a sequence of
symbols
o ...S,S5.5,5,S,...

= For a given time ¢, we will
label the past and future
sequences

= And we define the notion of
a stationary stochastic
process, if the probability of
any measurable future
event sequence (taken from
the possible set F) is
independent of time

8, is the past

S, is the future

the system is stationary

it P(S, €415, =5)
=P(S, € 4|5, =s) forall
t, and ¢,

S* are the last L symbols
S* are the next L symbols

| Predicting the future

= We want to look at previous symbols, and predict
the probability distribution of future symbol
sequences

= We are going to partition the set of possible
previous symbols such that all the elements in a
given cell of this partition are matched to the same
predicted distribution over the set of possible future
sequences

= If the function mapping a past history to a future
distribution is n, past sequences s, and s,, are in the
same partition cell if and only if n(s,)=n(s,)

| FEffective states

= We will call each cell in this partition an
effective state of the underlying process, for a
given prediction function n

= We will call R the set of effective states

induced by n

| Learning

« We would like to learn the  1(S*:R)
partition, and the predicted R I
distributions, based on past H (S" |R) <H (S LS )
sequences
= Let’s concentrate on getting
the right partitions
» We'd like to maximize the
mutual information between
the partition R and the
possible sequences of
future states
= Any prediction that is as
good as one could do
remembering all past states
is called prescient

| Statistical Complexity

m C(R) is the number of bits needed to

represent the partition

m Note that while this is computed in bits, and is
based on a statistical model, it is a different
sort of complexity measure than H

= It is a sort of “machine size”

| Causal states

= We will call the (unique) set of prescient
states that minimizes statistical complexity
the causal states of the system

m Let’s recap: this is the most efficient set of
sets of previous symbols that predict the
probability distribution of future sequences




| But there’s more

= Given one causal state, and a symbol from the real process, we
move to another causal state

= We want to find those transitions, as well

= |t turns out that this gives a deterministic dynamical system in the
following sense

o For a causal state, and current symbol s, the machine moves to
another particular causal state, with probability 1

= However, recall the system we are modeling is stochastic,
o so the model is stochastic, in the sense that the sequence of
symbols s that are “input” is stochastic
m Also recall that the causal states are mapped to probability
distributions over the future states by the function n
n Whew!

| The system’s e-machine

m |s defined by the symbol set of the original
symbolic dynamical system, that system’s
causal states, and the transition probability
matrices T®)

0 =P(S' =s5.5,, =0,1S, =0,

| Markov Process

m The causal states form a Markov process

m That is you only need to know the current
state to completely determine the probability
distribution over all possible future states

m We call also this the Markov property

Recurrent, Transient, and Synchronization
States

= |In a Markov process, states are either
o Recurrent — visited over and over again in an infinite loop
o Transient — visited once, and never returned to again

= In an e-machine, transient states are also called
synchronization states since the represent the
history of symbols you have to see before you can
fix yourself into the appropriate recurrent state

= Crutchfield’s complexity measures will ignore
synchronization states, in general

= We might also call a set of connected recurrent
states and aftractor of the process

| Complexity metrics

= We need two numbers to characterize the
complexity of the system, given the
&-machine
o C(R), the statistical complexity
= The variable memory needed to represent the machine
o H, the entropy of the state transitions

m This is rather profound!

| Two kinds of predictable

= Weather that is wildly variable is predictable in its
variability (high H)
o Well treated with probabilistic models

» Weather that is very periodic is very predictable
(high C)
o Well treated with deterministic models

s Complex weather is neither of these things

o (complexity in this sense is characterized by bounded
randomness and relatively high size of the machine used to
describe dynamics)

o Hard to get a good model of either kind




| Causal state splitting reconstruction
(CSSR)
= A somewhat exhaustive algorithm for finding
a system’s e-machine

m We start by assuming only one causal state,
and the largest possible

m It's very interesting to look at the complexity
metrics inferred for various systems

| The CSSR algorithm

m Given data from a system of symbol
dynamics
o Start with one causal state and the assumption
that symbols are uniformly randomly generated
(maximum H)
o Test statistically to see if causal states should be
added

» If so, add a state, and compute appropriate distributions
and transition probabilities from the given data, and
repeat

= If not, stop

| Slightly more detail...

m Set L=0, S’={o} (the null causal state)
= While L<L,,,
o For each causal state oin S’
= Calculate the conditional probability distribution of all
future state sequences of length L
= For each history in o
o Consider each sequence that consists of this history and
one more previous character
o Calculate the conditional probability distribution of all future
state sequences of length L
0 Use a statistical test to see if this distribution is the same as
that for any existing causal state

1

o The new history gives a distribution that is
statistically the same as that of an existing causal
state
= Add this history to that state

o Else
» Create a new state that contains just this history

m Calculate the causal state transitions
corresponding to any given symbol

» | have simplified this terribly!

| A CSSR Example

s Consider the famous
logistic equation

w X(t+1)=rX(t)(1-X(t)

» This is the primary
example of
deterministic chaos

= We convertitto a
symbolic dynamical
system by outputting 1
if X(t)>0.5, 0 otherwise

| CSSR gives an e-machine

» For each value of r, and
Lmax=16

= These are plotted in the
space of the two
complexity measures C
(“machine size”) and H
(“randomness”)

= The phase transition k
occurs at the 0 ! HLLEVTG 21
Feigenbaum number H,




| At the phase transition

= Adding more inference

to CSSR (increasing 00
L,..,) just leads to larger ] &
and larger machine size /
(V is approximately 2°) 1 =
o I L
» This is the so-called ] !
edge of chaos ,.e’f
= |t also indicates a jump ]/
up Chomsky’s ]

hierarchy of grammars

| The Edge of Chaos

m Is a phenomena often discussed in the field
of Complexity

m |t seems to indicate an region of system
dynamics bounded by “simple” and “simply
random” behaviors, where

» Interesting developmental or accidental
patterns and phenomena occur in the system

m It's what | was trying to capture with
“medium” Q

| Another study of the edge

= Consider Kaufman’s
Random Boolean Networks N

= Recurrent networks
(dynamical systems) with
binary outputs/inputs, and
random Boolean functions
at the nodes

s Characterized by N
(number of nodes) and K
(connectivity)

= Started with some bit string,
they settle towards one of
(possibly many) attractors

| Attractor Length

=
]

= As a function of
N and K

= For K < 3 (ish), length
of attractors expands
as sqrt(N)

= For K> 5 (ish), length
of attractors expands
exponentially with N
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= For Karound 3 length o A
of attractors is sub- B B 81
linearin N...

| Number of distinct attractors

» As a function of
N and K

m For K < 3 (ish), number of attractors expands
exponentially with N

m For K> 5 (ish), number of attractors expands
as a low-order polynomial of N

m For K around 3 number of attractors expands
sub-linearly in N

| Stability of attractors

= That is, whether small & i
random perturbations | .f
return to a given | e
attractor, or go to some
other attractor

= For N<3 (ish) attractors
are fairly unstable

=» For N>5 attractors
unstable

= For N around 3,
attractors are stable

Ervutme w Fea 104




| Summary of this edge

m K<3: many simple unstable behaviors
m K>5: few complicated unstable behaviors

m K around 3: few medium complicated stable
behaviors

m This is another edge of chaos
m Butis it the same one

Uniting Crutchfield and Kaufman’s
Edges?

= Procedure

o Generate large numbers of RBNs, with various
levels of ongoing perturbation (mutations of the
output)

o Use CSSR to find e-machines for the results

o Find a unified method of examining the results

“Dimensionless Entropy”

m Consider H/C, the “random” complexity
relative to the “machine” complexity

» We examine this for the input and the output
of the RBNs:

o At the input, C is the number of bits necessary to
describe the RBN, and H is the entropy of the
“mutations”

o At the output, C and H are as given by CSSR
= We are measuring the complexity of what we
can infer, versus what is actually there

|Preliminary Results  © -
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‘ Take Home Messages

= Dynamical system (including symbolic dynamics)
behavior can be characterized by (compressed into)
o Eigen decomposition (and similar)
o Attractor description
o And in a broader sense, information theoretic approaches
o Which can be characterized by Markov chains

= Such examination reveals, among other things
o Two distinct kinds of complexity: randomness and machine

size

o The edge of chaos phenomena

= These remain active research topics




