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Dynamical Systems and 
Information Theory

Information Theory Lecture 4

Let’s consider systems that evolve with 
time
� That is, systems that can be 

described as the evolution 
of a set of state variables

� Such evolution can be in 
discrete or continuous

� The former is governed by 
difference or recurrence 
equations, the later by 
differential equations
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Some Vocabulary

� If F is linear, the system 
is a linear system, 
likewise nonlinear

� The order of the system 
is the number of 
historical terms in the 
difference equations, or 
the highest order n in 
the differential 
equations
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Differential equations in first-order form

� In general, a system of 
differential equations 
can be converted to a 
first order system 
through the addition of 
variables

� Here’s an example for a 
second order, linear 
system ( ) ( )
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Eigenvalues and Eigenvectors
� Eigen is a German word, which roughly translates to 

“characteristic”
� For a mathematical transformation of some vector of variables

� An eigenvector of the transformation is a characteristic shape for 
that transformation

� An eigenvalue is a corresponding magnitude for that shape
� A transformation may have several eigenvalues and 

eigenvectors
� Representing behaviors of transformations as a combination of 

eigenvectors is a form of data compression
� We will examine eigenvalues and vectors in continuous 

dynamical systems as an example

An example

� Consider solving a 
ordinary, linear 
differential equation

� We solve by assuming 
a solution form

� Which reduces to the 
problem of finding 
eigenvectors
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In first-order form

� This is the standard 
eigenvalue problem for 
A

� Solutions are the 
eigenvalues for the 
matrix (transformation) 
A

� For a given λ, the 
solution for x in λ x=Ax 
is an eigenvector 

ignoring the trivial  solution
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In dynamical systems

� Eigenvectors (shapes) represent modes of 
the characteristic (unforced) behavior of the 
system

� Eigenvalues (magnitudes) are related to 
these shape’s durations through time

Behold the wonder of Euler
� Eigenvalues come in 

complex conjugate 
pairs

� Thus
� positive real parts 

indicate growth
� negative real parts 

indicate decay
� Imaginary parts indicate 

frequency of oscillation
� Of the associated 

eigenvector (shape) 
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In summary
� For a transformation, eigenvectors are characteristic shapes, 

eigenvalues of their characteristic magnitudes
� For dynamical systems, these the durations through time of 

modes of behavior
� We can describe continuous linear dynamical systems with a 

matrix, via first order form
� Eigenvectors of this matrix indicate one of several characteristic 

“shapes” of a dynamical systems evolution
� For corresponding eigenvalues:

� Positive real parts indicate that shape grows exponentially
� Negative real parts indicate that shape dies off exponentially
� Imaginary parts indicate the speed of oscillation around that 

shape (“natural frequency”)

Attractors

� In general, we can say that dynamical 
systems have transient behavior (that which 
dies out over time) and steady-state behavior

� Any steady state behavior is also known as 
an attractor of that system

� Systems can also “diverge” (one of more of 
their state variables can go to infinity)

Three kinds of attractors

� Fixed points
� An equilibrium value of the state vector

� Periodic attractors
� A repeating sequence of state vector values

� Chaotic attractors
� A sequence that never diverges, but never 

repeats (!?)
� Attractors can also be stable or unstable
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Examining attractors
� As an experiment, let’s 

construct a matrix 
describing a dynamical 
systems behavior using the 
method of delays

� This method allows is a 
non-analytical way of 
examining system behavior 
without having to have the 
system equations

� We can treat either discrete 
or continuous systems with 
this method
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Singular value decomposition
� Is a generalization of eigen 

decomposition (which we’ll 
talk about in more detail 
later)

� Let’s get the singular values 
σ of X

� Then normalize them to 0-1
� The distribution indicates 

the complexity of system 
dynamics 

� Let’s take the entropy of the 
resulting distribution
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An Example

� Let’s consider a set of 
particles connected 
with nonlinear springs 
and dampers

� We can think of this as 
a sort of “particle 
swarm”

� Let’s look at how Ω
varies with the spring 
and damper strength
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Low Ω

� Motion in this figure is 
largely right to left

� This is the case where 
the long term behavior 
is for the particles to 
“lock” and behave like a 
single particle

� Relative to the particle’s 
center of mass, this is a 
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“Medium” Ω
� Is the situation where the 

particles do not diverge, but 
do not “coalesce”

� It is likely that this is a 
chaotic attractor (but I 
haven’t technically proven 
that)

� We might call the behavior 
“complex”, “emergent” or 
“self organized”

� We’ll look a bit more at 
“complexity” measures
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Symbolic Dynamics

� Let’s assume that we are taking 
measurements of a dynamical system in 
discrete time, and that each measurement 
results in one symbol from an alphabet A, 
consisting of k possible symbols

� The underlying system might be a discrete or 
continuous dynamical system

� With or without stochastic elements
� Note that we are brushing over details of 

stochastic processes at this point
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Let’s consider a symbolic dynamical 
system (Crutchfield and Shalizi)
� Generating a sequence of 

symbols
� …S-2S-1S0S1S2…

� For a given time t, we will 
label the past and future 
sequences

� And we define the notion of 
a stationary stochastic 
process, if the probability of 
any measurable future 
event sequence (taken from 
the possible set F) is 
independent of time
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Predicting the future
� We want to look at previous symbols, and predict 

the probability distribution of future symbol 
sequences

� We are going to partition the set of possible 
previous symbols such that all the elements in a 
given cell of this partition are matched to the same 
predicted distribution over the set of possible future 
sequences

� If the function mapping a past history to a future 
distribution is η, past sequences s1 and s2, are in the 
same partition cell if and only if η(s1)=η(s2)

Effective states

� We will call each cell in this partition an 
effective state of the underlying process, for a 
given prediction function η

� We will call R the set of effective states 
induced by η

Learning
� We would like to learn the 

partition, and the predicted 
distributions, based on past 
sequences

� Let’s concentrate on getting 
the right partitions

� We’d like to maximize the 
mutual information between 
the partition R and the 
possible sequences of 
future states

� Any prediction that is as 
good as one could do 
remembering all past states 
is called prescient
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Statistical Complexity

� C(R) is the number of bits needed to 
represent the partition

� Note that while this is computed in bits, and is 
based on a statistical model, it is a different 
sort of complexity measure than H

� It is a sort of “machine size”

Causal states

� We will call the (unique) set of prescient 
states that minimizes statistical complexity 
the causal states of the system

� Let’s recap: this is the most efficient set of 
sets of previous symbols that predict the 
probability distribution of future sequences
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But there’s more
� Given one causal state, and a symbol from the real process, we 

move to another causal state
� We want to find those transitions, as well
� It turns out that this gives a deterministic dynamical system in the 

following sense
� For a causal state, and current symbol s, the machine moves to 

another particular causal state, with probability 1
� However, recall the system we are modeling is stochastic, 

� so the model is stochastic, in the sense that the sequence of 
symbols s that are “input” is stochastic

� Also recall that the causal states are mapped to probability 
distributions over the future states by the function η

� Whew!

The system’s ε-machine

� Is defined by the symbol set of the original 
symbolic dynamical system, that system’s 
causal states, and the transition probability 
matrices T(s) 

( )( ) 1 ' '
1, |s

ij t j t iT P S s S Sσ σ+= = = =
r

Markov Process

� The causal states form a Markov process
� That is you only need to know the current 

state to completely determine the probability 
distribution over all possible future states

� We call also this the Markov property

Recurrent, Transient, and Synchronization 
States
� In a Markov process, states are either

� Recurrent – visited over and over again in an infinite loop
� Transient – visited once, and never returned to again

� In an ε-machine, transient states are also called 
synchronization states since the represent the 
history of symbols you have to see before you can 
fix yourself into the appropriate recurrent state

� Crutchfield’s complexity measures will ignore 
synchronization states, in general

� We might also call a set of connected recurrent 
states and attractor of the process

Complexity metrics

� We need two numbers to characterize the 
complexity of the system, given the 
ε-machine
� C(R), the statistical complexity

� The variable memory needed to represent the machine
� H, the entropy of the state transitions

� This is rather profound!

Two kinds of predictable

� Weather that is wildly variable is predictable in its 
variability (high H)
� Well treated with probabilistic models

� Weather that is very periodic is very predictable 
(high C)
� Well treated with deterministic models

� Complex weather is neither of these things
� (complexity in this sense is characterized by bounded 

randomness and relatively high size of the machine used to 
describe dynamics)

� Hard to get a good model of either kind
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Causal state splitting reconstruction 
(CSSR)
� A somewhat exhaustive algorithm for finding 

a system’s ε-machine
� We start by assuming only one causal state, 

and the largest possible
� It’s very interesting to look at the complexity 

metrics inferred for various systems 

The CSSR algorithm

� Given data from a system of symbol 
dynamics
� Start with one causal state and the assumption 

that symbols are uniformly randomly generated 
(maximum H)

� Test statistically to see if causal states should be 
added
� If so, add a state, and compute appropriate distributions 

and transition probabilities from the given data, and 
repeat

� If not, stop

Slightly more detail…

� Set L=0, S’={σ0} (the null causal state)
� While L<Lmax

� For each causal state σ in S’
� Calculate the conditional probability distribution of all 

future state sequences of length L
� For each history in σ

� Consider each sequence that consists of this history and 
one more previous character

� Calculate the conditional probability distribution of all future
state sequences of length L

� Use a statistical test to see if this distribution is the same as 
that for any existing causal state

If 

� The new history gives a distribution that is 
statistically the same as that of an existing causal 
state
� Add this history to that state

� Else
� Create a new state that contains just this history

� Calculate the causal state transitions 
corresponding to any given symbol

� I have simplified this terribly!

A CSSR Example

� Consider the famous 
logistic equation

� X(t+1)=rX(t)(1-X(t))
� This is the primary 

example of 
deterministic chaos

� We convert it to a 
symbolic dynamical 
system by outputting 1 
if X(t)>0.5, 0 otherwise

CSSR gives an ε-machine

� For each value of r, and 
Lmax=16

� These are plotted in the 
space of the two 
complexity measures C 
(“machine size”) and H 
(“randomness”)

� The phase transition 
occurs at the 
Feigenbaum number
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At the phase transition

� Adding more inference 
to CSSR (increasing 
Lmax) just leads to larger 
and larger machine size 
(V is approximately 2C)

� This is the so-called 
edge of chaos

� It also indicates a jump 
up Chomsky’s 
hierarchy of grammars

The Edge of Chaos

� Is a phenomena often discussed in the field 
of Complexity

� It seems to indicate an region of system 
dynamics bounded by “simple” and “simply 
random” behaviors, where

� Interesting developmental or accidental 
patterns and phenomena occur in the system

� It’s what I was trying to capture with 
“medium” Ω

Another study of the edge
� Consider Kaufman’s 

Random Boolean Networks
� Recurrent networks 

(dynamical systems) with 
binary outputs/inputs, and 
random Boolean functions 
at the nodes

� Characterized by N 
(number of nodes) and K 
(connectivity)

� Started with some bit string, 
they settle towards one of 
(possibly many) attractors

F(x) F(x) F(x) F(x). . .

. . .

K

N

F(x) F(x) F(x) F(x). . .

. . .

F(x) F(x) F(x) F(x). . .

. . .

K

N

Attractor Length
� As a function of 

N and K
� For K < 3 (ish), length 

of attractors expands 
as sqrt(N)

� For K > 5 (ish), length 
of attractors expands 
exponentially with N

� For K around 3 length 
of attractors is sub-
linear in N…

Number of distinct attractors

� As a function of 
N and K

� For K < 3 (ish), number of attractors expands 
exponentially with N

� For K > 5 (ish), number of attractors expands 
as a low-order polynomial of N

� For K around 3 number of attractors expands 
sub-linearly in N

Stability of attractors
� That is, whether small 

random perturbations 
return to a given 
attractor, or go to some 
other attractor

� For N<3 (ish) attractors 
are fairly unstable

� For N>5 attractors 
unstable

� For N around 3, 
attractors are stable
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Summary of this edge

� K<3: many simple unstable behaviors
� K>5: few complicated unstable behaviors
� K around 3: few medium complicated stable

behaviors
� This is another edge of chaos
� But is it the same one

Uniting Crutchfield and Kaufman’s 
Edges?
� Procedure

� Generate large numbers of RBNs, with various 
levels of ongoing perturbation (mutations of the 
output)

� Use CSSR to find ε-machines for the results
� Find a unified method of examining the results

“Dimensionless Entropy”

� Consider H/C, the “random” complexity 
relative to the “machine” complexity

� We examine this for the input and the output 
of the RBNs:
� At the input, C is the number of bits necessary to 

describe the RBN, and H is the entropy of the 
“mutations”

� At the output, C and H are as given by CSSR
� We are measuring the complexity of what we 

can infer, versus what is actually there

Preliminary Results
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Take Home Messages
� Dynamical system (including symbolic dynamics) 

behavior can be characterized by (compressed into)
� Eigen decomposition (and similar)
� Attractor description
� And in a broader sense, information theoretic approaches
� Which can be characterized by Markov chains

� Such examination reveals, among other things
� Two distinct kinds of complexity: randomness and machine 

size
� The edge of chaos phenomena

� These remain active research topics


