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Theme of this lecture: We introduce the notion of of stochas-
tic process, provide some examples of it and discuss entropy and
coding theory in this context.
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Stochastic processes

A stochastic process is an indexed sequence of r.v. X,,n € N. We say that
the process is

e Stationary if P({Xyy1 =z1,..., Xnte = zn}) = p(z1,...,2n)
e A Markov chain if

P{Xnt+1 = znt1}{Xn = 2n,...,. X1 = z1}) = P{Xn+1 = Znt1}{Xn = zn})
X, is called the state of the Markov process at time n.

e Invariant Markov chain if the above probability does not depend on n.

In the last case we define p(z,t1|zn) := P{Xnt1 = Zut1}H{Xn = zn})

Invariant Markov chain

If the process is an invariant Markov chain, we have

p(z1,...,20) = p(Tn|Tn-1)P(@n_1|Zn_2) - - - p(x2|21)P(21)

We also introduce the transition matrix Pj; = P(X,4+1 = j|Xn = 1).

We have P(X,41 = j) = >, P(X, = i)P;; (another notation is p,11(z,t1) =
ZZ" pn(:cn)Pxnmn-l—l'

pn IS called a stationary distribution if p,+1 = p,. If the initial distribution is
stationary it follows that the process is stationary.




Example

Let X = {1,2} and Pii=1—-a,Pio =a,P1 =3,Pp=1-0, with a,8 € [0, 1].

The stationary distribution solves the eigenvalue equation

uP = p, or PTM = pu.
A direct computation gives
B a
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where P is the 2 x 2 matrix whose elements are the F;; above.

Alternatively, this distribution can be obtained by balancing the probability
flow across any cut-set in the state transition graph of the process (use

pro = p2f and pa + p2 = 1)

Entropy rate of a stochastic process

It is defined by
H(Xq,...,Xn)

n

w(X) = fim,

when the limit exists.

Example 1: If X; are identically independent distributed (i.i.d),
H(X1,...,Xn) = nH(X)

which implies that A(X) = H(X).

Example 2: A typewriter has m equally likely output letters with which
can produce m" equiprobable sequences of length n. In this case we have
H(X1,...,X,) = logm™ and, so, h(X) = logm

Example 3: If X; are independent but not identical one can have cases where
H(X;) oscillates in a way that h(X) does not exist.




Entropy rate of a stochastic process (cont.)

We also define A(X) = limp—ooo H(Xn|X,_-1,...,X1), When the
limit exists.

h(X) measures the conditional entropy of the last symbol given
the past (as opposed to hA(X) which measures the per symbol
entropy rate).

Theorer_n: If X,,n € N is a stationary process, the entropy rate exists and
h(X) = h(X).

Theorem: If X,,,n € N is a time invariant Markov chain, then
h(X) = h(X) = H(X2|X1)

Proof: Note that H(X,|Xn-1,...,X1) = X(Xn|Xn-1) = H(X2|X1). The result

follows form the previous theorem

Example (cont.)

For a stationary Markov chain we have
H(X)=H'(X) =IimH(Xn| Xn-1,...,X1) = lim H(X,|Xn—1) = H(X2|X1).

Here the conditional entropy is computed using a given stationary distribution
@, and we have

H(X)=-) wPjlogP; (from H(X2|X1) = — ) p(z1)p(w2|e1) log p(w2l|z1)

¥ 1,22

If we go back to the above example we see that:

ot B
at+pB a+p

H(Xn) = H( )

and

H(XG|X:) = a’%ﬂﬂ(co )

Thus, the rate at which the entropy of the process grows is different from
the entropy of the state X, (n is arbitrary).




Random walk

Let G be a connected weighted graph with vertexset V ={1,...,n} and nxn
symmetric weight matrix W: W;; is the weight of the edge (4,5) (if W;; =0
there is no edge between ¢ and j). We also require that W;; = 0 for every 1.

A random walk on this graph is the process X;,7 € N with range(X;) =V and

given that X, = the next vertex j is chosen with probability

W..
p; = -
Zk Wik,
(so the next vertex can only be one among those connected to 1)

_ Z]‘VV”

Show that the stationary distribution of this process is u; = S,

Shannon code

Recall than the average description length L of an optimal code for a r.v. X

satisfies:
HX)<XL<H(X)+1

If X has a D—adic distribution, that is, P(X = z;) = pr = D% for some
L € N, there exist an optimal code whose average L* equal H(X). Otherwise

we may pay up to an extra bit more than the entropy to describe X.

If we use the (sub-optimal) Shannon code the average description length is
still in the above bound. According to this code z; has codelength equal to

[log 1.
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Coding a stochastic process

If we wish to encode a sequence of r.v., X" = (X31,...,X,), we can use the
same idea above and have a code for sequence z" = (z1,...,x,) With length

() = Jloa s | <log s 1

and, as before,
H(X™) E[é*(X”)] E[ﬁ(X”)] H(X”)

n n n n n

The expected code length per unit symbol is defined by L, = E[{(X")]/n. Our
discussion above tells us that if the process is stationary L, and L} converge
to the entropy rate of the process.
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Coding a stochastic process (cont.)

If X;, =X, i=1,...,n (i.i.d. random variables), we have

p(") = [ p(=:)
=1
and, so,

H(X™) =) H(X;) = H(X)
=1

Note that, even in this simple case, unless p(z) is D—adic, the codeword
lengths for X™ are different from the codeword lengths obtained by concate-
nating the Shannon code for X, as

o 1 - 1
Ha") = log [p(w”)w = Zlog [p(mi)w

=1
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See Chapter 4 of
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