Methods to Evolve L egal Phenotypes

Tina Yu and Peter Bentley

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK.
T.Yu@cs.ucl.ac.uk P.Bentley@cs.ucl.ac.uk

Abstract. Many optimization problems require the satisfaction of constraintsin
addition to their objectives. When using an evolutionary agorithm to solve such
problems, these constraints can be enforced in many different ways to ensure
that legal solutions (phenotypes) are evolved. We have identified € even ways to
handle congtraints within various stages of an evolutionary agorithm. Five of
these methods are experimented on a run-time error constraint in a Genetic Pro-
gramming system. The results are compared and analyzed.

1. Introduction

Constraints form an integral part of every optimization problem, and yet they are
often overlooked in evolutionary algorithms (Michalewicz, 1995b). A problem with
congtraints has both an objective, and a set of restrictions. For example, when de-
signing a VLSI circuit, the objective may be to maximize speed and the constraint
may be to use no more than 50 logic gates. It is vital to perform constraint handling
with care, for if evolutionary search is restricted inappropriately, the evolution of
good solutions may be prevented.

In order to explore the relationship between constraints and evolutionary algo-
rithms, this paper presents an evolutionary framework in which the search space and
solution space are separated. In this framework, a genotype represents a point in the
search space and is operated on by the genetic operators (crossover and mutation). A
phenotype represents a point in solution space and is evaluated by the fithess function.
The result of the evaluation gives the fitness of the phenotype, and by implication, of
the underlying genotype.

In the same way that phenotypes are evaluated for fitness, not genotypes, it is the
phenotypes which must satisfy the problem constraints, not the genotypes (although
their enforcement may result in the restriction of some genotypes). However, unlike
the fitness evaluation, constraints can be enforced at any point in the algorithm to
attain legal phenotypes. As will be described |ater, they may be incorporated into the
genotype or phenotype representations, during the seeding of the population, during
reproduction, or handled at other stages.

There are two main types of constraint: the soft constraint and the hard constraint.
Soft congtraints are restrictions on phenotypes that should be satisfied, but will not
aways be. Such constraints are often enforced by using penalty values to lower fit-
nesses. lllegal phenotypes (which conflict with the constraints) are permitted to exist
as second-class, in the hope that some portions of their genotypes will aid the search
for fit phenotypes (Michalewicz, 1995b). Hard constraints, on the other hand, must
aways be satisfied. Illegal phenotypes are not permitted to exist (although their corre-

sponding genotypes may be, as will be shown).

This paper identifies eleven methods to enforce constraints on phenotypes during
various stages of evolutionary agorithms. Five methods are experimented on a run-
time error congtraint in a Genetic Programming (GP) system. The results are com-
pared and analyzed.

The paper is structured as follows: section 2 provides related work; section 3 clas-
sifies and describes the constraint handling methods, section 4 presents the experi-
ments; section 5 analyzes the results and section 6 concludes.

2. Related Work

Genetic Algorithms: Michalewicz and Schoenauer provide perhaps the most
comprehensive reviews of implementations of constraint handling in genetic algo-
rithms (GAs) (Michalewicz 1995b, Michalewicz & Schoenauer 1996). They identify
and discuss eeven different types of system. However, upon examination it is clear
that his classification is based upon differences in implementation, and perhaps be-
cause of confusion of various multiobjective techniques, it fails to group constraint
handling methods which employ similar underlying concepts. Nevertheless, the work
of Michalewicz and colleagues provides some of the key invegtigations in this area.
For example, Michalewicz (19958) describes the application of five methods (three
based on penalizing illegal phenotypes) to five test functions. Michaewicz et. a.
(1996) describe the use of ‘behavioral memory’ and other penaty-based approaches
in GAsto evolve different engineering designs. Schoenauer and Michalewicz (1997)
describe the use of arepair method in a GA to evolve legal phenotypes.

Evolution Strategies & Evolutionary Programming: In their origina implementa-
tions, both ES and EP performed constraint handling during the creation of the initial
populations. Schwefd's ES algorithm also used a 'legal mutant' constraint handling
method, where the creation of an individual is simply repeated as long as the individ-
ual violates one or more constraints (Béck, 1996). Standard EP, on the other hand,
typically does not enforce constraints during the generation of new offspring. More
recent research on congtrained optimization problemsin EP is described in (McDon-
nell et a., 1995) and (Fogel et al., 1996).

Genetic Programming: The traditional GP paradigm (Koza, 1992) does not distin-
guish genotypes from phenotypes, i.e. the search space is regarded as being the same
as the solution space. An individual is represented as a program parse tree. This parse
tree represents both the genotype and phenotype of an individual as it is modified by
the genetic operators and it is evaluated by the fitness function. Consequently, con-
straintsin traditional GP are perceived as being applied to phenotypes and genotypes.

For example, program parse treesin GP are restricted by syntactic constraints: they
must satisfy the syntax of the underlying language. Various other forms of syntactic
constraints have been proposed (Gruau, 1996; Janikow, 1996). Yu and Clack (1998)
applied both syntactic constraints and type constraintsin their GP system.

Banzhaf (1994) proposed an aternative paradigm for GP, where the search space is
separated from the solution space. A mapping scheme is used to transform genotypes
into lega phenotypes (Keller & Banzhaf, 1996).

3. Constraintsin Evolutionary Algorithms

Just as evolution requires selection pressure to generate phenotypes that satisfy the
objective function, evolution can have a second selection pressure placed upon it in
order to generate phenotypes that do not conflict the congraints. However, using
pressure in evolutionary search to evolve legal solutionsis no guarantee that all of the
solutions will dwaysbe legal (i.e., they are soft constraints).

Constraints can also be handled in two other ways: solutions that do not satisfy the
congtraints can be prevented from being created, or they can be corrected. Such
methods can have significant drawbacks such as loss of diversty and premature con-
vergence. Nevertheless, these two types of constraint handling ensure that all solu-
tions are always legdl (i.e., they are hard constraints). The following section identifies
eleven methods which enforce hard constraints or 'soft constraints. These methods
also fall within the three conceptual categories: Prevention, Correction, and Pressure,
see Table 1. (Note that this categorization encompasses the Pro-Life, Pro-Choice
categorization of Michalewicz and Michalewicz (1995). It is fdt that the use of more
neutral terminology is more appropriate for such technical classifications.)

Prevention HARD C1, C2, C3, C10
Correction HARD C4, C5
Pressure SOFT Ce6, C7, C8, C9, C11

Table1. Classification of constraint handling methods.

3.1 Detailed Classification

Whilst previous work in classifying constraint handling methods within evolutionary
search hasidentified implementation differences of existing systems, to date there has
not been a general classification of constraint handling based on the underlying con-
cepts of evolutionary agorithms.

Such a classification can be achieved, not only by examining the existing work of
others, but aso by examining the significant stages within evolutionary algorithms
and identifying where it is possible to incorporate constraints. This allows all existing
constraint handling methodsto be clearly categorized and understood, and & so identi-
fies new, previously unexamined ways of tackling constraints in evolutionary search.
Figure 1 shows the most significant and commonly used stages within current GAs
and GP. (It should be noted that most a gorithms contain a subset of these stages.)

After some careful consideration of these stages, it becomes clear that congraints
can be incorporated at eleven different places within the design and execution of
evolutionary agorithms (as shown on the right hand side of Figure 1). These eleven
methods should not be confused with Michalewicz's (1995b) lig of different re-
searchers implementations (which coincidentally also contains eleven elements). The
methods shown in Figure 1 are categorized solely on their placement within the evo-
Iutionary algorithm, and can be used in combination or separately of each other. There
follows a description of each method and its potential advantages and disadvantages:

C1l: LEGAL SEARCHSPACE Design genotype representation.

During the design of the evolutionary system, create a genotype representation that is
only capable of representing legal solutions. Evolutionary search is then forced to
consider only the space of lega solutions, where al congraints are satisfied. This

method is frequently used, although designers who use it are often unaware that they
are performing constraint handling of any kind. For example, in GAs, if the range of a
problem parameter must be between 0 and 255, most designers would automatically
use a binary gene consisting of eight bits - and this genotype representation would
then ensure that the 0-255 range constraint was always satisfied.

search space C1: LEGAL SEARCHSPACE
(contains genotypes)
Design: solution space C2: LEGAL SOLUTIONSPACE
(contains phenotypes)
operators
}03: LEGAL SEED
(random) cpded values
Initialize: ﬁ
genotypes
genotypes C4: GENETIC REPAIR
—»Map: C5: LEGAL MAP
phenotypes
phenotypes
Evaluate: C6: GENOTYPE PENALTY
fitness values C7: PHENOTYPE PENALTY
fithess values
Select parents: i C8: LEGAL SELECTION
genotypes
genotypes, fitness values
Calculate fertility C9: LEGAL FERTILITY
of parents: # of offspring per parent
parent genotypes
Generate crossqver/mutation
offspring: i¢1 fertility
child genotypes C10: INFANTICIDE
genotypes
L Place offspring into repjace C11: LEGAL REPLACEMENT
population:
genotypes

Fig. 1. Constraint placement within significant stages of evolutionary agorithms.

C2: LEGAL SOLUTIONSPACE Design phenotype representation.
During the design of the evolutionary system, create a new phenotype representation,
so that only legal phenotypes can be defined. All genotypes are then mapped onto
these phenotypes, which by definition, must always satisfy the constraints.

Often great care can go into the design of suitable phenotypes. For example, prac-
titioners of floor-planning problems have two important constraints: room-spaces
should not overlap, and no space should be left unaccounted for. To ensure that the
computer always evolves solutions that satisfy these congraints, designers of these
systems use phenotype representations which define the location of rooms indirectly,

by defining the location and number of dividing walls (Gero & Kazakov, 1998).

C3: LEGAL SEED Seed with non-conflicting solutions.

Theinitial population is seeded with solutions that do not conflict with the constraints
and the crossover and mutation operators are designed so that they cannot generate
illegal solutions. Many congraints in GP are implemented using this method. For
example, Gruau (1996) uses a context-free grammar to specify syntactic constraints of
parse trees. Yu and Clack (1998) employ a type system to ensure that only type-
correct programs are considered during evol ution.

C4: GENETIC REPAIR Correct illegal genotypes.
If anew individual conflicts with a constraint, correct the genes that are responsible
for the conflict to make it satisfy that constraint. For algorithms such as GP which
make no explicit digtinction between genotypes and phenotypes, this method modifies
the solution, and the modification isinherited by its offspring.

This *genetic engineering’ approach ensures that al solutions will satisfy all con-
straints, but may damage epistatic genotypes, discarding the result of careful evolu-
tion over many generations. In addition, the design of the repair procedure may be a
non-trivial task for some problems.

C5: LEGAL MAP Correct illegal phenotypes.

Map every genotype of an individual to a phenotype that satisfies the constraints
using some form of ample embryology. This forces al solutions to satisfy al con-
straints, and also does not disrupt or constrain the genotypes in any way, alowing
evolutionary search to continue unregtricted. For agorithms such as GP which make
no distinction between genotypes and phenotypes, this method modifies the solution
before fitness evauation, but the modification is not inherited by its offspring. (Also
note that athough this method is often used in combination with C2, the use of a
phenotype representation which can only represent lega solutionsis not a prerequisite
for the use of Legal Map.)

Using a mapping stage to generate legal phenotypes is a very common approach to
perform smple constraint handling. Goldberg (1989) describes perhaps the simplest:
mapping the range of a gene to a specified interval. This permits constraints on pa-
rameter range and precision to be satisfied without the need to redesign the genotype
representation and coding. More recently mapping stages have become more intricate
and deserving of the term ‘artificial embryology'. Researchers in GP have aso re-
ported that the use of an explicit genotype and mapping stage for constraint handling
can increase diversity in populations (Banzhaf, 1994).

Type constraints in GP can be implemented using this method as an alternative to
the Legal Seed method. A simple example is to map a value with an illegal type of
'real’ into a value with lega type 'integer'. However, for other more complex types
such aslist or array, a proper mapping scheme may be difficult to design. This kind of
type-constraint handling is called ‘dynamic typing' - in contrast to the 'strong typing
approach mentioned in the Legal Seed method.

C6: GENOTYPE PENALTY Penalizeillegal genotypes.

Identify alleles or gene fragments within genotypes that seem to increase the chances
of a solution conflicting the constraints, and reduce the fitness of any individual con-
taining these fragments of genetic code. Although the identification of ‘bad genes
may discourage solutions from conflicting constraints, it will not guarantee that all

solutions satisfy al constraints. In addition, with epistatic genotypes, this approach
may result in the discouragement of other, epistatically linked, useful features within
solutions. To date, research has investigated the automatic identification of 'good
genes during evolution to encourage the evolution of solutions with higher fitnesses
(Gero & Kazakov, 1998). However, the authors of this paper are unaware of any work
which identifies ‘bad genes' for constraint handling.

C7: PHENOTYPE PENALTY Penalizeillegal phenotypes.

When a phenotype conflicts a constraint, reduce its fitness. This ‘soft constraint’ dis-
courages al phenotypes that conflict the constraints, but does not force evolutionary
search to generate lega solutions. In effect, the use of a penalty value becomes an
additional criterion to be considered by the evolutionary algorithm, and multiobjective
techniques should be used to ensure that all criteria are considered separately (other-
wise one or more criteria may dominate the others) (Bentley & Wakefield, 1997).
Thisis one of the most commonly used methods for constraint handling in evolution-
ary algorithms. (Indeed, it is the only one explicitly mentioned in Goldberg’ s book.)

C8: LEGAL SELECTION Select only legal parentsfor reproduction.

During reproduction, only select parent solutions which satisfy the constraints. This
method should be used with a fithess-based replacement method to ensure that evolu-
tion is guided to evolve fit solutions in addition to legal solutions. (If al solutions are
illegal, parents which violate the fewest constraints to the least extent should be se-
lected.) However, the exclusion of potential parents may discard beneficia genetic
material and so could be harmful to evolution. Other than the work described in this
paper, only one recent investigation has been made on this method (Hinterding &
Michalewicz, 1998).

C9: LEGAL FERTILITY Increase the no. of offspring for legal parents.
Having sel ected the parent genotypes (based on their fitnesses) this method all ocates a
larger fertility to parents which better satisfy the constraints. This method can be
thought of as an implicit multiobjective method, allowing independent selection pres-
sure to be exerted for high fitness and legal solutions. Being a 'soft constraint', there
are no guarantees that all solutions will always satisfy the constraints. In addition, if
legal parents are favoured excessively, it is possible that the diversity of the popula-
tion could be reduced. To the authors' knowledge, this idea has not been previousy
used for constraint handling.

C10: INFANTICIDE Stop illegal offspring from being born.

If anew solution conflicts a congraint, discard it, and try generating another solution
using the same parents. This brute-force method, which is sometimes used in GAs
(Michalewicz, 1995b), forces all solutions to satisfy the constraints, but may discard
useful genetic materia (and may also be prohibitively slow).

C11: ILLEGAL REPLACEMENT Replaceillegal solutionswith legal offspring.
When replacing individuals with new offspring in the population, always replace the
solutions that conflict congraints. (If all solutions satisfy the constraints, either re-
place randomly or replace the least fit.) This method should be used with a fitness-
based selection method to ensure that evolution is guided to evolve fit solutions in
addition to legal solutions. However, the replacement of potentia parents discards
potentially beneficial genetic material and so may be harmful to evolution. This
method requires the use of a steady-gtate GA (Syswerda, 1989).

4. Experimentswith a Run-Time Constraint in GP

This section describes experiments conducted to compare five of the constraint han-
dling methods described above in a GP system. The experiments are focused on one
particular kind of constraint in GP: the run-time error constraint.

GP evolves computer programs as problem solutions. Thus, in most cases the ge-
netic material is in some sense executable. When run-time errors occur during the
execution of a program, its behaviour isundefined. A fundamental constraint isthere-
fore imposed on GP: no programs can contain run-time errors.

Unlike other types of constraint, the run-time error constraint has a specia prop-
erty: when it occurs the fitness cannot be calculated. (When the behaviour of the pro-
gram is undefined, the evauation of its fitness cannot be performed.) Illegal pheno-
types are therefore not alowed to exist. This means that soft constraint methods
(whereillegal phenotypes can exist as second-class) can only be used in conjunction
with a phenotype correction method - they cannot be used on their own. In the ex-
periments, the Legal Map method is used to serve this purpose.

A condraint can be handled using many different methods, yet some are more suit-
able than others. For the run-time error condraint, its prevention (in methods C1, C2,
C3 and C10) is extremely hard because these errors are only evident during program
execution. In addition, genetic repair (method C4) requires the corrected material to
follow the genotype syntax (so that it can be inherited) which is not appropriate (or
easy to implement) for this congraint. Consequently, none of the hard constraint
methods are suitable for this problem except for the Legal Map method (C5), which
correctsillegal phenotypes (and the corrections are not inherited by offspring).

Soft constraint approaches, on the other hand, are appropriate for this problem.
The experiments investigate four of these methods (C7, C8, C9, and C11). (Method
C6 which penalizesillegal genotypes by identifying ‘bad genes was not investigated
because of the subgtantial time required for itsimplementation).

Objective: Find the symbolic function x* - X’ + X’ - x using 9 pairs of sample points.

Terminal Set: X

Function Set: +-% 1

Fitness Cases: 9 data points (x,y,) where x; is the input value between -1.0 and 1.0 and
y, isthe desired output value.

Fitness: 9/(9+total_error), wheretotal_error is < and R is the result of
phenotype execution given input x, 2 =R

Hits: 2 ol p - Lif|y, - R|=0.01
Z I {O, otherwise

Parameters: PopSize =500, MaxTest = 25500, TreeSize = 25, Xover = 60%,
Mutation = 4%, Copy = 36%, Runs =20

Successpredicate: | 9 hits

Table 2. Tableau of the simple symbolic regression problem

In summary, the experiments investigate one hard constraint-handling method (Le-
gal Map) and four soft constraint methods (Phenotype Penalty, Legal Selection, Legal
Fertility, and Illegal Replacement) to enforce the zero-division run-time error con-

straint. The zero-divison congraint was chosen as it is the most frequently observed
run-time error, potentialy occurring in any numerica problem tackled by GP.

The experiments use GP to solve a symbolic regression problem, which involves
finding a function, in symbolic form (with numeric coefficients) that fits a given finite
sample of data. It is "data-to-function” regression. The goal is to find the target func-
tion of x-x*+x-x, given a data sample of nine pairs (x, y), where x is a value of the
independent variable and vy, is the associated value of the dependent variable. Table 2
summarizes the features of this problem.

4.1 Implementation of Constraints

To alow the use of the Illegal Replacement method, the GP system uses a steady-
state replacement scheme (Syswerda, 1989) where a population with a congant num-
ber of individuals is maintained. Unless otherwise stated, parents are selected using
fitness proportionate sel ection, and offspring replace individual s with the worst fitness
in the population. The five constraint handling methods were implemented as follows:

C5: Legal Map. When a run-time error occurs during the execution of a phenotype,
thevaue ‘1’ isreturned and the execution continues. For example, if the phenotypeis
5+x/x and x = 0.0, Legal Map changes the phenotype to: 5+1. Corrected phenotypes
are marked with a run-time error flag to allow this method to be used in conjunction
with the following four.

C7 & C5: Phenotype Penalty with Legal Map. Phenotypes that have to be corrected
are penalized by multiplying their total_error values by 2. Legd phenotypes that do
not have to be corrected are not penalized.

C8 & Cb: Legal Selection with Legal Map. During the selection of parents for repro-
duction, only programs without run-time errors are selected (randomly).

C9 & C5: Legal Fertility with Legal Map. If both parents are legal, three offspring
are generated from them. If one parent is legal, two offspring are generated, and if
neither of the parentsislegal, only one offspring is generated from them.

C11 & C5: Illegal Replacement with Legal Map. One offspring (lega/illegal) is
generated to replace a randomly selected illegal individual. If there is no illega indi-
vidual left in the population, the normal replacement scheme is used.

4.2 Results

Twenty runs were performed for each constraint handling method. Each run was
terminated when a program which produced nine hits was found (i.e., when the
evolved function produced output sufficiently close to the desired output for al nine
data points) or when 25,500 programs had been processed. If the former occurs, the
run istermed successful. Table 3 summarizes the experiment results.

The experiments show that Legal Map, Phenotype Penalty with Legal Map and
Legal Fertility with Legal Map find a phenotype with nine hits in most of the runs
(18/20 and 20/20). For the successful runs, the average number of programs tested is
around 4,000. In contrast, Legal Selection with Legal Map and Illegal Replacement
with Legal Map methods do not perform well. Most of the runs are unsuccessful and

in the small number of successful runs, they have to test a larger number of pheno-
typesto find one with nine hits.

Method SuccessyRuns Average Number of Programs
Processed in Successful Runs
Legal Map 18/20 3,983
Phenotype Penalty & Legal Map 18/20 4,841
Legal Selection & Legal Map 5/20 18,284
Legal Fertility & Legal Map 20/20 3,984
Legal Replacement & Legal Map 3/20 6,998
Table 3. Summary of experiment results
A. Performance Curves B. Average Number of Hits
1 8
o 09 . @ 7 e
o 08 K4 < '
S o7 ;' 5 ° ST
o 05 " E 4 \“'«'
> [3 V
= 04 J o3
F 031 2 /
Qo ! = 2 i
o 0z 1.4 g
o g1 1 / I 117
0 T T 0 T T
0 10000 20000 30000 0 10000 20000 30000
Number of Programs Processed Number of Programs Processed
N C. Av. No. of Born Lega Phenotypes D. Average Fitness Values
@ 500 1
< 095 i
S 450 pr
2 400 S s o
S 3 3 /
o > @
= 300 @ 075 !
2 250 2 /
= 200 £ 065 i
é’ 150 } 2-;:0,55 '.’
S 100 1! 5 /
S 50 Z 045 !
= 0 ‘ ‘ 035 ‘ ‘
< 0 10000 20000 30000 ’
Number of Programs Processed 0 10000 20000 30000
Number of Programs Processed
\ fertility selection replacement - ------ map ------- penalty \

Fig. 2. Result summary charts.

Figure 2A provides the probability of success of each method based on the experi-
ments. The Legal Map, Phenotype Penalty with Legal Map and Legal Fertility with
Legal Map methods al perform comparably. Their success curves increase stability
from the beginning. Most of the runs found a phenotype with nine hits before 10,000
phenotypes had been tested. However, Lega Selection with Legal Map did not
achieve this. Its best success rate was 25% with a requirement of processing 25,000
phenotypes. The success probability of 1llegal Replacement with Legal Map was & so
very low. Even when 14,000 phenotypes were processed, there was less than a 20%
probability that this method would find a phenotype with nine hits.

10

It is clear that three of the methods provide good success rates in evolving pheno-
types with nine hits, see figure 2B". However, the results also show that these same
methods were the worst a evolving phenotypes which satisfied the run-time error
congtraint. As shown in Figure 2C, the two methods with the lowest success rates:
Legal Selection with Legal Map and Illegal Replacement with Legal Map were able
to evolve considerably more legal phenotypes than the other methods. Only one
method: Legal Fertility with Lega Map, had a high success rate and evolved larger
numbers of legal phenotypes.

5. Analysisand Discussion

The experiments with the run-time error constraint demonstrate a common dilemma
in all constrained optimization problems: both the objective and constraints need to be
satisfied, and evolving phenotypes which fulfill one of them can sacrifice the evolu-
tion of phenotypes which fulfill the other. Using an evolutionary algorithm to find
solutions for such problems is therefore difficult because evolutionary search is di-
rected in different directions. The experiments investigated five different ways in
which a GP system could be made to evolve both fit and legal programs. The results
show, however, that each method exerted a different level of evolutionary pressure for
the constraint and objective. It is clear that such different levels of pressure can effect
the degree to which both criteriaare met.

In the implementation described above, the Legal Map method (a hard constraint)
is the neutral placement in the spectrum (i.e., the control method) as it repairs phe-
notypes without the addition of a second selection pressure for the constraint. The
other four (soft constraint) methods use this same phenotype repair scheme with an
added pressure to reduce the number of illegal programs evolved.

Figure 2C shows the average number of born-legal phenotypes in the population
using these methods. Our control, the Legal Map method, enforces no pressure for the
constraint and the average number of legal individuals remains around 200 throughout
the runs. In contrast, the Illega Replacement method shows that a very strong pres-
sure is exerted on the GP system to evolve legal programs. After the processing of
only 2,500 phenotypes, al illegal phenotypes have been replaced and the population
contains only legal phenotypes. The Legal Selection method also exerts a strong pres-
sure for the constraint. Since only legal phenotypes are selected (randomly) for repro-
duction, programs which satisfy the constraint are propagated quickly: after 15,000
phenotypes are processed, only legal phenotypes exigt in the population. The Fertility
method exerts pressure for congraints by generating more offspring for legal parents
than for illegal parents. Compared to the control method, Lega Map, all twenty runs
of this method show a consistent increase of legal phenotypes in the population. (The
downward trend after 5,000 individuals have been processed, evident in figure 2C, is
a distortion of the graph caused by a single run, and is not consdered significant.)

Not all of the methods exert such congistent pressures for the constraint, however.
The Penalty method generates a strong fitness-driven evolutionary process (illegal
phenotypes have their total_error values doubled to reduce fitness values, so pressure
for the constraint drops asindividuals become fitter.). Asfigure 2C shows, this results
in the number of legal phenotypes being gradually reduced to satisfy fithess (objec-

' Note that the data shown in figure 2B were generated in separate runs.

11

tive) requirement. It seems likely that the use of fixed penalty values might prevent
this effect.

Figure 2D shows the average fitness in the population using these methods. Driven
to satisfy only the fitness (objective), the Map method raises population fitness con-
sistently through fitness proportionate selection. Similarly, the strong fitness-oriented
pressure of the Penalty method and the Fertility method rai ses population fithess con-
sistently. The Selection method also raises the average fitness as it replaces the worst
individuals with newly created offspring. However, the average fitness stays below
0.87 because by only selecting legal phenotypes for reproduction, the genetic diver-
Sty is dramatically reduced. (Figure 2C shows that only 15% of initia population
were lega). Because of this reduced diversity, combined with the strong pressure for
congtraints, the population tends to converge prematurely. Thisis why only 5 out of
the 20 runs for the Selection method were successful. The same effect is evident for
the Replacement method. Again, genetic diversity islost as a large number of illega
phenotypes are replaced. Populations converged when around 2000 phenotypes had
been processed. Only 3 out of the 20 runs were successful.

In summary, the combination of pressure for the run-time error constraint and fit-
ness directs evolutionary search to find a legal phenotype which produces nine hits.
While some of the results may be due to the type of constraint tackled and the imple-
mentation of the congraint handling methods, these experiments show that the Fertil-
ity method seems to provide the best balance of evolutionary pressure on both criteria
It raises the average fitness value and at the same time reduces the number of illegal
phenotypes in the population. As aresult, the average number of hitsin the population
israised consistently (see Fig. 2B) and successful phenotypes are found in al 20 runs.

6. Conclusions

This paper presented a framework to alow the classification of constraint handling
methods within various stages of evolutionary algorithms. Such methods impose
either hard congraints or soft constraints, and all use prevention, correction, or pres-
sure to enforce the constraints. Eleven methods were identified, including some which
had not been explored previously.

Five of these eleven methods were tested on a run-time error constraint in a GP
system. The results show that depending on the problem, the methods used and their
implementation, the seesaw of evolutionary pressure can either favour constraints or
objectives. Of the methods examined, the Legal Fertility method provided a good
balance between these two criteria, and led GP to find phenotypes which satisfied
both objective and congtraints.

Acknowledgements

Thanks to Bill Langdon for his Simple-GP on which our code is based and Tina's
supervisor, Chris Clack, for his support. Thanks also to the anonymous reviewers.

References
1. Bé&ck, T., Evolutionary Algorithmsin Theory and Practice. Oxford Uni. Press, NY (1996).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

12

Banzhaf, W. Genotype-phenotype-mapping and neutral variation - a case study in genetic
programming. Parallel Problem Solving From Nature, 3. Y. Davidor, H-P Schwefd, and
R. Mnner (eds.), Springer-Verlag, (1994) 322-332.

Bentley, P. J. & Wakefield, J. P., Finding acceptable solutions in the pareto-optimal range
using multiobjective genetic agorithms. Chawdhry, P.K., Roy, R., & Pant, R.K. (eds) Soft
Computing in Engineering Design and Manufacturing. Springer Verlag London Limited,
Part 5, (1997), 231-240.

Fogd, L., Angeline, P. J., Béck, T. Evolutionary Programming V, Porceedings of the 5"
Annua Conference on Evolutionary Programming. MIT Press, Cambridge, MA (1996).
Gero, J. S. and Kazakov, V. A, Evolving design genes in space layout planning problems,
Artificial Intelligence in Engineering (1998).

Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley (1989).

Gruau, F., On using syntactic constraints with genetic programming. Advances in Genetic
Programming 11, P.J. Angeline & K.E. Kinnear, Jr, (eds.), MIT Press, (1996) 377-394
Janikow, C., A methodology for processing problem constraints in genetic programming.
Computers and Mathematics with Application, Vol. 32 No. 8, (1996) 97-113.

Keller, R. and Banzhaf, W. Genetic programming using genotype-phenotype mapping
from linear genomes into linear phenotypes. Genetic Programming ‘96: Proc. of the 1st
Annual Conf. on GP., MIT Press, Cambridge, MA. (1996) 116-122.

Koza, J. R., Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA (1992).

McDonndl, J. R., Reynolds, R. G., Fogel, D. B. Evolutionary Programming 1V, Proceed-
ings of the 4" Annual Conference on Evolutionary Programming. MIT Press (1995).
Michaewicz, Z., Genetic algorithms, numerica optimization and congraints, Proc. of the
6th Int. Conf. on Genetic Algorithms, Pittsburgh, July 15-19, (1995a) 151--158.
Michalewicz, Z., A survey of congtraint handling techniques in evolutionary computation
methods Proc. of the 4th Annual Conf. on Evolutionary Programming, MIT Press, Cam-
bridge, MA (1995b) 135--155.

Michaewicz, Z., Dasgupta, D., Le Riche, R.G., and Schoenauer, M., Evolutionary algo-
rithms for constrained engineering problems, Computers & Industrial Engineering Jour-
nal, Vol.30, No.2, September (1996) 851--870.

Michaewicz, Z. and Michalewicz, M., "Pro-Life versus Pro-Choice Strategies in Evolu-
tionary Computation Techniques', Ch. 10, Evolutionary Computation, |EEE Press (1995).
Michalewicz, Z., Schoenauer, M., Evolutionary Algorithms for Constrained Parameter
Optimization Problems, Evol utionary Computation 4 (1996) 1-32.

Hinterding, R. and Michalewicz, Z., Your brains and my beauty: parent matching for
congtrained optimisation, Proc. of the 5th Int. Conf. on Evolutionary Computation, An-
chorage, Alaska, (1998) May, 4-9.

Schoenauer, M. and Michdewicz, Z., Boundary operators for constrained parameter opti-
mization problems, Proc. of the 7th Int. Conf. on Genetic Algorithms, East Lansing,
Michigan, July 19-23 (1997) 320-329.

Syswerda, G., Uniform crossover in genetic algorithms. In Schaffer, D. (ed.), Proc. of the
Third Int. Conf. on Genetic Algorithms. Morgan Kaufmann Pub., (1989).

Yu, T. and Clack, C., PolyGP: A polymorphic genetic programming system in Haskell.
Genetic Programming ‘98: Proc. of the 3rd Annual Conf. Genetic Programming, (1998).

