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Abstract

This paper investigates the evolvability of an implicit
embryogeny-based representation for the evolution of 3-D
morphologies. Previous results using this representation
have shown that this particular incarnation of an
implicit embryogeny does not lend itself well to
evolution. Two different experiments are described, the
results of which suggest that a many-to-one genotype-
to-phenotype mapping is not sufficient to ensure
evolvability. The paper concludes by suggesting
attributes that a better representation should have.

1 INTRODUCTION
The Genetic Algorithm (GA) (Holland, 1975;
Goldberg, 1989) has been around since the 1970s and
is based on evolution in nature. GAs require a coded
representation of the solution known as a genotype. A
population of genotypes (coded candidate solution) is
then created and maintained. Genetic operators such as
recombination and mutation are then applied to the
genotypes. A fitness function encapsulating the essence
of the problem is then applied to evaluate the
performance of each genotype’s corresponding
phenotype (or candidate solution).

The genetic algorithm is the only type of Evolutionary
Algorithm (EA) that makes an explicit distinction
between genotype and phenotype. Nature has exploited
this distinction by evolving a complex mapping
between genotype and phenotype, enabling the
evolution of organisms far more complex than anything
our EAs have managed to evolve. Despite this source
of inspiration, little work has been done into the nature

of the mapping between genotype and phenotype. A
complex mapping is not alone sufficient for the
evolution of complex solutions. We also need a deeper
understanding of the nature of evolvability. Such an
understanding would permit us to evolve and identify
complex solutions in solution space.

This paper looks at the evolvability of an instance of a
special type of genotype-to-phenotype mapping: an
implicit embryogeny (Bentley and Kumar, 1999). The
following section introduces the areas of natural and
computational embryology. Section three describes
evolvability and briefly summarises some work in the
field. Section four details the implicit embryogeny-
based system used and outlines a set of experiments.
Sections five and six provide results and analysis,
respectively. Conclusions are presented in section
seven, with a brief section on further work.

2 EMBRYOLOGY AND
EMBRYOGENY

Embryology is essentially the study of the formation
and development of animal and plant embryos. It
comprises three fundamental processes:

• morphogenesis — which involves the emergence
and change of form (Bard, 1990).

• pattern formation — the generation of ordered
spatial patterns of cell activities, through processes
such as cellular differentiation (Wolpert, 1998).

• cellular differentiation — in which cells become
specialised for particular functions (Wolpert,
1998).

These three processes operate together in different
parts of the embryo at different times, in stages defined



by a ’recipe’ known as an embryogeny. Embryogenies
have evolved in nature to describe how an animal
should be grown (epigenesis). This contrasts with the
preformationist idea, where a complete organism was
thought to be present from the earliest stages of
development and simply increased in size (rev.
Wolpert, 1998; Kumar & Bentley, 2000).

The distinction between genotype and phenotype in
biology is a relatively recent one, even in comparison
to the age of embryology as a discipline. The genotype-
phenotype distinction was officially recognised in 1909
by the Danish Botanist Wilhelm Johannsen (Wolpert,
1998) and has been instrumental in helping to link the
fields of genetics and embryology.

2.1 COMPUTATIONAL EMBRYOLOGY

Biology has clearly evolved designs of impressive
complexity. This is due in part to the underlying
representation (DNA) and the complex mapping from
genotype-to-phenotype. Nature does not use a set of
step-by-step, explicit instructions or encodings; instead
instructions are implicitly encoded within the
representation. Structure within a design can then
emerge due to the complex dynamics of interaction
between multiple implicitly encoded instructions.  It
therefore seems likely that one way of evolving
complex solutions is to move away from step-by-step,
explicit instructions and encodings, towards implicitly
encoded instructions and representations that are
specifications for the construction of complex
phenotypes from relatively simple genotypes.

There are three types of computational embryogeny:
external, explicit, and implicit (Bentley & Kumar,
1999). Most external embryogenies are hand-designed
and are defined globally and externally to genotypes.
They are characterised by fixed, non-evolvable
structures specifying how phenotypes should be
constructed using the genes in the genotype. Richard
Dawkins’ Blind Watchmaker program (Dawkins,
1987), used a simple external embryogeny to create
biomorphs. Dawkins' program used the genetic
operator mutation to vary biomorph designs. Dawkins
assigned fitness values to the biomorphs himself,
breeding morphologies to resemble various biological
organisms.

An explicit embryogeny specifies each step of the
growth process in the form of explicit instructions. In
computer science explicit embryogenies can be viewed
as a tree containing instructions at each node. Typically
the genotype and the embryogeny are combined and
both are allowed to evolve simultaneously. As an
example consider Genetic Programming (GP) (Koza,
1992) which uses tree structures to represent its

genotypes. GP therefore, offers a simple and concise
way to evolve explicit embryogenies. There are a
number of other notable examples of explicit
embryogenies. Koza used an explicit embryogeny in
the form of cellular encoding for the evolution of
analogue circuits (Koza et al, 1999). Sims used an
explicit embryogeny with the idea of directed graphs to
specify the nervous systems (neural networks) and
morphologies of virtual creatures (Sims, 1999).

In contrast, an implicit embryogeny does not explicitly
specify each step of the growth process. Instead, rules
are used to specify a dynamic and emergent process
which results in a particular morphology (solution). De
Garis describes an implicit embryogeny to evolve
convex and non-convex shapes using a cellular
automata approach along with one notion of cellular
differentiation. He has reported encouraging results, as
well as highlighting problems that need to be tackled in
order to improve upon them (de Garis, 1999). Jakobi
has evolved neural network driven robot controllers,
using a biologically inspired encoding scheme –
another example of an implicit embryogeny. His work
makes use of an environment with diffusable
morphogens and protein interactions (Jakobi, 1995). In
a similar vein to this work, the focus of this paper is on
the evolvability of a particular instance of an implicit
embryogeny.

3 EVOLVABILITY
Evolvability is the capacity of a population to evolve
and is an important concept in both biology and
evolutionary computation (Marrow, 1999). An
understanding of evolvability especially in EC would
allow us to evolve solutions of greater complexity to
problems (Marrow, 1999), and to create better, more
evolvable representations for EAs (Bentley, 2000).

Much work has been done into evolvability, however
as yet there is still no generally accepted measure. As
Bedau points out, "...it is difficult to study evolvability,
in part because of the difficulty in objectively and
feasibly quantifying evolvability in a general enough
way to compare it across different evolving systems",
(Bedau, 1999).

Research has identified desirable properties in order to
allow the evolution of evolvability. Glickman and
Sycara  compared mechanisms, operating at two
different levels, for the evolvability of a population to
itself evolve (Glickman & Sycara, 1999). The first was
at the search operator level and involved encoding the
per-bit mutation rate for each gene onto the genome –
each gene had its own mutation rate, instead of having
a global mutation rate. The second mechanism was at
the representation level and involved looking at genetic



programming. Analyses of the results revealed that the
following properties were desirable in order to promote
evolvability: a many-to-one mapping from genotype-
to-phenotype, and non-elitist selection (Glickman &
Sycara, 1999).

Through evolving morphologies under artificial
selection, using his Blind-Watchmaker program,
Dawkins (1989) has suggested that some lineages are
more evolvable, and capable of generating more new
forms than others. He attributes this to the use of
inheritable replicators and in particular an embryology
able to convert a simple genome into a relatively
complex phenotype. In addition, a many-to-one
genotype-to-phenotype mapping has been identified by
numerous researchers as an important property for
evolvability (Altenberg, 1995; Glickman & Sycara,
1999; Turney, 1999; Wagner, 1999).

4 SYSTEM & EXPERIMENTS
This section describes both the current implicit
embryogeny system and two sets of experiments used
to investigate the evolvability of a relatively simple
instance of an implicit embryogeny.

Phenotypes were displayed in an isospatial grid, which
uses isospatial co-ordinates as opposed to standard
cartesian co-ordinates. It was developed by Frazer
(1995) who saw the cartesian co-ordinate system as
containing strong biases towards linear shapes, and as
he points out nature does not exhibit linear shapes. A
point in isospatial space is termed a mote, and is
defined by six axes yielding 12 directions. Although no
system is free of biases, the isospatial system removes
orthogonal biases, thus allowing for the generation of
more organic morphologies.

4.1 THE IMPLICIT SYSTEM

Within the isospatial grid cells are able to divide and
proliferate according to the number of cell divisions.

The system employed in this work used an implicit
embryogeny-based representation. Phenotypes are
grown using a set of rules. The chromosome length
was fixed and consisted of 12 genes/rules in total.
Every rule/gene comprised a precondition section and
an action section. The precondition section of a
gene/rule comprised 24 bits, see figure 1. These 24 bits
were grouped into pairs, corresponding to directions in
the isospatial grid. Consequently, this grouping of the
24 precondition bits into pairs yielded 12 directions
within the grid. The first bit of a pair in the
precondition part of gene/rule represents a ‘don't care’
wildcard (depicted in figure 1 as a ‘#’), and the second
bit represents the value part (depicted in figure 1 as a
‘V’) for that particular direction. If a value bit is set to
1 this means that in order for the action part of the rule
to fire a cell must be present in that particular direction,
and if set to 0, no cell should be present in that
particular direction. If on the other hand, the don't care
bit is set to 1, the system ignores the value part of the
pair - meaning the rule does not depend on whether the
cell is present or not.  However, if the don't care bit is
set to 0 then the value bit is taken into account.

The second section of a gene/rule is the action section.
This section consists of 4 bits that are decoded to yield
a number between 0 and 11, thus giving 12 distinct
numbers corresponding to growth in one of 12 distinct
directions, as defined by the isospatial grid.

In order for a gene/rule to fire (or be expressed) a
system of activation was adopted in which every time a
precondition was met, the gene/rule's activation energy

(a) (b) (c)

(d) (e)

Figure 1. Best of run individuals for each threshold value (a) 0.25, (b)
0.75, (c) 1.5, (d) 2.25, (e) 3.0



was increased by 0.25. Once a gene/rule’s activation
energy exceeded the specified threshold amount the
gene/rule would fire and the action section of the
gene/rule decoded and expressed.

1 1  0  1  0 0 0 1  0  1  0  1 1  0  1  0  1  0 1 1 1  0 0 1

# V # V # V # V # V # V # V # V # V # V # V # V

0    1     2     3     4     5     6    7      8     9    10   11

4.2 EXPERIMENTS

The evolution of a sphere was the application selected
to investigate the evolvability of the implicit
embryogeny-based representation. Two sets of
experiments were conducted. Both experiments
employed a simple generational genetic algorithm
(Goldberg, 1989) without elitism (Glickman & Sycara,
1999).

4.2.1 Experiment 1

This set of experiments entailed evolving a sphere
using 12 genes that encoded rules for the growth of a
shape in an isospatial grid.

The following GA parameter settings were used for the
first set of experiments: a total of 100 runs were
performed with a population size of 100 individuals for
100 generations and a mutation rate, per-bit, of 0.03.
Three divisions were allowed, i.e., the initial seed-cell
(zygote) was allowed to divide a maximum of three
times. On each division each daughter cell inherits the
parents division counter minus one. Rules fired when
the activation exceeded a threshold value of 0.75 (a
threshold of 0.75 means that 9 precondition matches
are required), and a total of 12 randomly created rules
were used in-order to grow the designs from a single

zygote cell. The measure of fitness used was based on
the following equation for the radius of a sphere:

X2 + Y2 + Z2 = R2

Given this equation, it is possible to determine whether
a cell has been placed inside or outside of the desired
target shape. For example, if the sum of the cell’s X, Y,
and Z co-ordinate values squared, are greater than R2,
then the cell is out of the desired shape. If less than R2,
then the cell is inside the shape, and if equal to R2 the
cell is on the boundary itself. Fitness thus became a
minimisation of the following function:

fitness = (1 / #cells_inside_shape) + (#cells_outside_shape /
20)

Figure 3.  The system is able to evolve good
solutions (a) as well as some rather poor solutions
(b). The parameter settings were 5 divisions and
threshold values of 3.0 for (a) & 0.25 for (b).

(a) (b)

show how varying the rule-firing threshold affected
fitness when evolving spheres.

4.2.2 Experiment 2

This set of experiments were carried out to examine the
evolvability of the representation. This was done by
creating a genome, at random, which was then
subjected to 1000 single-point mutations. This was
repeated a total of four times starting from different
randomly sampled areas of the search-space. The
difference in cell number and cell position of the
phenotype for each point mutation was then recorded.

Figure 2. The structure of the precondition
section of a gene/rule. A ‘#’ denotes a ‘don’t
care’ case, and a ‘V’ denotes the value part of

each precondition pair for a particular
direction; direction are denoted by the

numbers at the top.



5 RESULTS
This section is split into two and provides the results
for both experiments.

5.1 RESULTS FOR EXPERIMENT 1

Figure 2 shows some of the best individuals evolved
after 100 generations for each threshold. They show
how fitness improves (morphologies become
increasingly more spherical) as the threshold is
increased, yet despite the improvements the
morphology shown in figure 2e represents the best the
system with a threshold of 3.0 and a cell division of 3
can do. The best fitness attained was 0.0625 for
threshold values of 2.25 and 3.0 as shown in figures 2d
and 2e.

Experiments varying the number of divisions have
been performed achieving much better fitness results,

such as, 0.027 (figure 3a), for runs using the following
parameter settings: threshold 3.0, divisions 5,
population size 500, over 100 generations. It was noted
however, that an increased number of divisions slowed
execution time down. Decreasing the value of the
threshold from 3.0 to 0.25 with the number of divisions
set to 5, causes the system to produce dramatically
worse results, for example, 0.75 (figure 3b). A typical
run with these settings had initial fitness values as high
as 3.75 and lasted in excess of 25 minutes using a
400MHz Intel Pentium PC.

Figure 4 shows how end of run fitness values get
better, i.e., fitness values decrease, as the threshold is
increased. Figure 4a shows the results for thresholds
0.25 and 0.75. It can be seen how a threshold of 0.25 is
effectively a flat line occasionally plummeting to give
a better fitness of 0.35. Increasing the threshold to 0.75
gives only moderately better results, yielding a best
fitness of 0.28. Figure 4b shows the results for three

Figure 4.  Graphs of Fitness versus Number of
Runs for all five Thresholds. As the Threshold

for each rule to fire is increased fitness gets
better.

(a)

(b)

(a)

(b)

Figure 5. Graphs showing difference
in phenotype of during a random walk

of length 1000, threshold used was
0.25.
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threshold values, namely, 1.5, 2.25, and 3.0. The graph
shows how a threshold value of 1.5 gives better fitness
values more often than thresholds 0.25, and 0.75.
However, the best results were obtained using
threshold values of 2.25, and 3.0.

5.2 RESULTS FOR EXPERIMENT 2

Figures 5 and 6 show the results for the second set of
experiments. They show the number of changes in the
phenotype, both cell number and cell position, during a
random walk of length 1000. The ruggedness (number
of large changes of cell position and quantity in the
phenotype) of figure 5a & 5b show just how
discontinuous the solution space is given a threshold of
0.25. Many single-point mutations can be made to the
genotype, often in excess of 50 before there is any
change in the phenotype.

Figures 6a and 6b show the same graph as for figure 5,
except with a threshold value of 3.0. As is clear, figures
6a and 6b are much less rugged than figures 5a and 5b.

Figure 6b for example, shows that for run 2 after 148
mutations, cell differences in the phenotype change
suddenly to 3. Two further mutations and the change is
somewhat more dramatic – a change of 8 cells. A
further 10 mutations later (160 mutations altogether at
this point), and there is yet another large change of 8
cells.

6 ANALYSIS
When the results for the first set of experiments are
analysed it becomes clear that the system is very
sensitive to changes in the threshold and division
parameters.

As the threshold required to activate a gene/rule is
increased the fitness gets better. This indicates that
good fitness is dependent on stricter precondition
requirements for gene activation (expression).

The reason for this behaviour is that the system must
evolve specific rules to promote and control growth.
Lower threshold values trigger growth with only few
precondition matches, resulting in excessive growth
and bad fitness values. Indeed, other experiments have
shown a threshold value of zero gives excessive and
uncontrolled growth. In contrast, higher thresholds
(much stricter precondition matches) get better fitness
values as evolution is able to make use of a greater
number of more specific rules in order to control
growth.

The second set of experiments, the random-walk
experiments, show how dissimilar phenotypes are
placed close together in solution space, making it
difficult to evolve solutions. The graphs in figures 5a &
5b show a very rugged landscape reflecting numerous
discontinuities in solution space for a threshold of 0.25.
This is consistent with the previous observation that by
reducing the value of the threshold parameter the
system is more inclined to cause growth.

In contrast, a threshold value of 3.0 as shown in figures
6a and 6b provide a somewhat less rugged landscape,
however, not smooth enough to allow progressive
evolution. For example, figure 6a, run 1 shows that
within a walk limit of 1000, after 511 single-point
mutations no further progress is seen, i.e., 489 further
mutations resulted in no change. Small changes in the
genotype do not correspond to small changes in
phenotype; in fact they correspond to large changes in
phenotype or no change at all. (As figure 5 shows, this
lack of potential evolvability is even worse for the
lower threshold.)

The results also show periods of no change (stasis)
during the course of a random walk. These periods of
stasis correspond essentially to different genotypes
yielding the same phenotype, due to a small degree of

Figure 6. Random walk graphs for four separate
runs sampled at random with a threshold of 3.0.
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redundancy in the precondition part of the genome (the
‘don’t care’ bits). There is therefore, a many-to-one
mapping from genotype to phenotype. Further
examination of identical phenotypes taken from
experiment 2 and their corresponding genotypes
(which were not identical) confirms that the mapping
does indeed possess a many-to-one relationship. Recent
literature (e.g., Shipman, 2000) indicates that such
relationships may be indicative of neutral networks and
hence may increase evolvability. However, irrespective
of this property both experiments showed that the
representation is not very evolvable. As is apparent
from this research, this may be attributed to the fact
that dissimilar phenotypes are placed too close together
in solution space – a result that is visible in the graphs
of figures 5 and 6, showing how periods of stasis are
punctuated with greatly dissimilar phenotypes from
their neighbours in solution space, making it difficult
for gradual evolution to occur.

The implicit embryogeny based representation used in
this work has the desirable many-to-one genotype-to-
phenotype mapping as advocated in the evolvability
literature (Glickman & Sycara, 1999; Turney, 1999;
Wagner, 1999; Bedau, 1999; & Altenberg, 1995).
Despite having this desirable many-to-one genotype-to-
phenotype relationship, the system still does not
perform as well as desired. This implies that a many-
to-one genotype-to-phenotype mapping, on its own, is
not enough to ensure evolvability.

7 CONCLUSIONS
This paper has looked at the evolvability of an implicit
embryogeny based representation. The particular
instance of an implicit embryogeny used in this work is
not as evolvable as one would desire for evolution.

This work has shown that implicit embryogeny-based
representations need to be designed with care. The
work hints of attributes for a better, new representation:

1. genotypic redundancy to cause many-to-one
relationships from genotype to phenotype

2. similar solutions should be placed close together in
solution space to allow gradual evolution, rather
than having to rely on excessive mutation rates in
an attempt to jump over the discontinuities of poor
representations.

Further Work

Further work is in progress to develop a new
representation more amenable to evolution and
benefiting from the research into evolvability.
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