

Improvised Music with Swarms
T. M. Blackwell and P. Bentley

Department of Computer Science
University College London

Gower St.
London, UK

tim@theHotandtheCool.co.uk, P.Bentley@cs.ucl.ac.uk

Abstract: This paper describes SWARMUSIC, an interactive
music improviser. A particle swarm algorithm is used to generate
musical material by a mapping of particle positions onto events in
MIDI space. Interaction with an external musical source arises
through the attraction of the particle swarm to a target.
SWARMUSIC is the first application of swarm intelligence to
music.

I INTRODUCTION
The field of computer music is not a new one, but there are
still very few systems that can play music in an improvised
style, or indeed interactively. Most effort has been spent on
systems that only interact weakly with humans (for example,
accompaniment programs that adjust pre-prepared material
according to external parameters), or music composition
programs that embody some encoding of musical knowledge
(a grammar, for example) but do not produce music in real
time. But the chief characteristic of an improvisation is that it
happens in real time and without revision. In fact interaction
and improvisation have a symbiotic relationship, and this is
to be heard most clearly in ‘free improvisation’.

Freely improvised music (which differs from form-based
improvisation as exemplified by jazz), is so named because it
is free from many conventional musical constraints.
Improvised music is not structured through tonality, form and
metre, but relies on:
1. a distinctive musical language for each improviser, and
2. an ability to couple this with the other contributions

arising from the ensemble.
It is proposed here that this coupling is primarily

expressive - performers pay attention to the change in a
musical landscape. This suggests that artificial improvisers
would not need to have large expert systems hardwired with
musical knowledge. Instead, through interaction, the
computer could attend to the expressive attributes of the
music. This would arise through a monitoring of the
primitive musical parameters of pitch, loudness and pulse.

In order to find a strong and individual musical language
for an artificial improviser, it is worth looking at some other
non-musical system that could be interpreted.

Certain properties of swarms and flocks are very
suggestive. A swarm (or a flock) has a persistent shape, and
it may suddenly change its direction of flight, with every
member almost spontaneously responding. Birds in a flock
avoid collisions yet remain attracted to the flock centre.
Swarms have similar behaviour but without the velocity
matching of near neighbours that is so characteristic of
flocks. For example, insects may also be attracted towards a

distant target, which they swarm around on arrival. In
general, swarms and flocks exhibit self-organisation.

In music, melody moves around a key centre, and has a
‘shape’ – the pattern of rising and falling tones. Large
intervals between notes are rare, and variations can be
visualised as gradual changes in shape. Notes tend to ‘avoid’
one another, but not by too much. Human rhythms are a
pattern of accents and placements about a beat (i.e., fixed
mathematical pulse). In other words, rhythm is attracted to
the beat. Chords are groups of notes with an avoidance of
small intervals and an attraction to consonant intervals. Good
harmony follows the rules of voice leading – notes make the
minimum movement necessary for the harmonic progression.
Chord progressions are ‘attracted’ to a key centre, but they
may actually avoid the tonic for some time, delaying
resolution.

This analogy suggests that music, and improvised music
in particular, is a self-organising system: local interactions
lead to structure, even though there is no central organisation
(as there is in a composition). The relevant local interactions
that lead to self-organisation are attraction and repulsion
[12].

In fact the ideas of attraction and avoidance do extend
into music. Musicians, as they interpret a piece of music, will
constantly vary expressive parameters such rhythm and
dynamics. However these variations (often minute) are
within limits set by stylistic constraints. For example,
adjacent notes will be played with similar, but not identical,
intensities. There is attraction towards a stylistic norm, but an
avoidance of the banal.

Structure in improvised music derives from spontaneous
(i.e., unplanned) changes in musical direction. This can only
occur in a flock-like way. Each musician is faced with a
constant dilemma: new expressive initiatives may be
followed, or they may be ignored. The tension between
expressive attraction and avoidance leads to the sudden,
apparently orchestrated, changes that characterise this music.

The idea underlying SWARMUSIC is that a musical
interpretation of a particle swarm (implementing both
attraction and repulsion) will correspond to a distinctive
musical language. Furthermore, a coupling to an external
musical source can be made by mapping that source to an
attractive target.

II BACKGROUND
SWARMUSIC is a music improviser. But what is improvised
music? Improvised music can be typified as a deliberate

avoidance of the usual musical constraints, but a more
positive heuristic is to think of musicians collaborating, but
doing so without a prepared structure (i.e., ‘free form’) and
without rehearsal. It is conjectured here that this
collaboration, if it succeeds, does so because of the
sensitivity of the musicians to the expressive dimension of
the music. This is an important concept, and is best explained
by considering levels of musical organisation.

Formally, music is a hierarchical organisation of sound.
Each sound has pitch, loudness and timbre. At the most
primitive, sounds are organised according to pulse or beat. At
the next level, small groupings of notes are organised into
melody, rhythm (i.e., the temporal placing of notes within a
pulse), harmony, and texture. Finally, these are grouped into
a form. However, this hierarchy says nothing about how the
music is realised in performance. These formal elements
need to be expressed by the performer. Interpretation arises
from individual decisions about, for example, dynamics
(changes in loudness within a group of notes), vibrato
(changes in loudness and pitch of a single note), swing
(particular rhythms found in jazz) and tempo (how many
beats per minute). These expressive parameters are usually
stabilised within an accepted style – a set of conventions that
govern interpretation. In improvised music, the formal
elements are almost inconsequential to the interpretation.
Instead, interaction and expression have a very high priority.

As well as being an improviser, SWARMUSIC is an
interactive musical source. Surprisingly, there are very few
examples of computer programs that can be said to interact
with a musician. One review of contemporary approaches to
computer music suggests that the focus of most research is on
composition, but there are four systems (Texture, IBVA, Vox
Populi, and M) that are designed for real time music
production [1]. Although these systems are interactive, the
human-computer interface is a computer keyboard, a mouse,
or a set of electrodes. In other words, the systems do not
interface with a human musician actually playing an
instrument. However two other interactive systems do allow
for real time input from an instrument: John Biles’s GenJam
[2] and the experiments of the trombonist George Lewis [3].
GenJam is perhaps closest in spirit to SWARMUSIC. A
genetic algorithm produces melodic phrases in response to a
real time input. The improvisations are in a (mainstream) jazz
style and depend on prior storage of the harmonic form.

Computer music, as a whole, is preoccupied with the
composition of music, and the means to this end is logic. In
other words, algorithms are used to generate music. The
algorithms are based on a synthesis of the logical elements
discussed above. Clearly the algorithms are developed with a
certain outcome in mind, and as such they encode a certain
amount of musical knowledge. The success of the system in
generating music will depend critically on the constraints and
procedures used in the algorithms, and this will depend on
the composer’s own intentions and musical knowledge.

Such rule-based or algorithmic approaches (which we
term A-type) can lead to music lacking in expression.
Miranda, too, is aware of these problems. He concludes his
study ([1], p206) with “…computers are very good at
complying with systemisations and rules, but they are useless
at breaking them”, and quotes the Brazilian composer

Richter, “In music, rules are made to be broken. Good
composers are those who manage to break them well”.

It might be possible to move away from algorithmic
generation and towards a machine that can musically interact
on equal terms with a human collaborator – I-types. The idea
behind an I-type approach is that it interprets, interacts and
improvises. An I-type would interpret some system whose
properties may have a musical analogue. Schoenberg defined
music as “repetition and variation” (Wolf and Thomson in
[2]). This is a very high level description, and misses many
elements important to the production of music, but is very
interesting for our purposes here. What happens if
Schoenberg’s observation is inverted: “Systems whose
properties include repetition and variation have musical
interpretations”? SWARMUSIC is an exploration of this
idea.

III SYSTEM OVERVIEW
There are three important processes in SWARMUSIC:
capture of external events and their placement as targets, the
particle swarm update algorithm and the interpretation of
particle positions as MIDI events.

The update algorithm in SWARMUSIC is based on the
algorithm of Reynolds’ flock simulations, but without
velocity matching [3]. The algorithm therefore imitates a
swarm rather than a flock. Each particle in the swarm feels an
attractive force toward the swarm centre of mass and an
inter-particle repulsion (avoidance). The avoidance is to
discourage particles from occupying the same locality –
which would be interpreted as the same set of musical ideas.
The attraction to the swarm centre opposes the avoidance
force and helps to establish coherency (i.e., form and shape).
An examination of these forces is contained in an
accompanying paper [11]. The general idea is that form will
emerge from the balance of opposing tendencies [12].

Additionally, the algorithm incorporates attraction
towards a target in a similar way to the early particle swarms
[4]. However, the algorithm differs from the usual particle
swarm optimisation (PSO) algorithm since there are no
concepts of global and neighbourhood ‘bests’ [5]. This is
because the musical swarm is not trying to optimise any
function (which would be an encoding of musical
knowledge). Instead, the target force is included to link the
swarm to the external source, and to constrain the swarm to
the target cube (see below).

 The total acceleration ai experienced by particle i (=
1,…N) at position xi is shown in Box 1. Here, xcentre and xtarget
are the centres of mass of the swarm {xi, vi}, i = 1,…N and
the target swarm {xT

i}, i = 1,…M. The particles move in a
space of dimension n. The three accelerations are
parameterised by the constants {Cavoid, p, pmin, acore, Ccentre,
Ctarget}.

The two attractive accelerations ai centre and ai target are
linear spring forces. These two terms are similar to the
accelerations in the PSO algorithms - replace xcentre and xtarget
by local and best positions. The avoidance acceleration ai avoid
is zero for separations greater than p – this encourages the
attractive accelerations. The particles experience an inverse
square repulsion between a core radius pcore and a limit of
perception p, and a constant ‘core’ acceleration at separations

less than pcore. This core acceleration can be made equal to
the acceleration at p by setting acore = Cavoid / pmin

2, which
ensures piecewise continuity at the core boundary. The
particles can be made to experience a constant repulsion for
all separations less than p by setting pmin = p. Note that pmin >
0 due to the singularity in the inverse square law.

ai = ai avoid + ai centre + ai target,

ai avoid = 0, rij ≥ p

prp,
r

C
a ijcore

ij 2
avoid

avoidi
ij

<<∑=
≠

 = acore, rij ≤ pcore
where rij = xi – xj,

ai centre = Ccentre(xcentre – xi)

ai target = Ctarget(xtarget – xi).

BOX 1 PARTICLE ACCELERATION

The update parameters, UP, are constituted from the

acceleration constants, a clamping velocity vmax and a target
cube length xmax: UP = {Cavoid, pcore, p, acore, Ccentre, Ctarget,
vmax, xmax}. The update algorithm is shown in Box 2. An
unusual feature is that velocity clamping occurs after position
update [11].

Choose dimensions {n, N, M}
Initialise swarm {xi, vi}
Place target swarm {xT

i} in cube T = [0, xmax]n
Initialise UP
Loop
 if (interact) capture events
 update {xT

i}
 Find xcentre , xtarget
 for each particle
 vi = v i + ai

 x i = x i + v i
if (|vi| > vmax) vi = (vmax / |vi|) vi

 endfor
 if (play) interpret swarm
until stopping criterion is met

BOX 2 UPDATE ALGORITHM

External interaction is included in this model through the

possibility of adjusting the swarm in response to streamed
audio events and is invoked by setting interact to true. The
capture algorithm parses an input audio stream and adds
targets, up to a maximum number. Then, as new events are
parsed, the targets are re-positioned according to a target
update algorithm. This means that the dynamics of the target
swarm are determined by the interaction of the external
musician. The attraction between the target swarm and the
particle swarm corresponds to the coupling between
musicians discussed above. The internal dynamics of the
swarm and the interpretation algorithm (which is invoked if
play is true), encodes SWARMUSIC’s own improvisational
ideas.

IV INTERPRETATION AND CAPTURE
Swarm interpretation is directly analogous to the
interpretation of a score. A simple interpretation must be
found that is musical and sensitive to the swarm’s time
development. The inspiration for the mapping to music space
came from the flock simulations of Reynolds [4]. The aim
was to find a musical interpretation of a flock or swarm.
Suppose that an observer is looking towards the coordinate
origin and at the flock (Figure 1).

FIGURE 1 A VIEW OF THE SWARM

By replacing each ‘boid’ with a note, the swarm can be

read as a score. In a score, the order of events is read from
left to right, and the duration of each event (which may be a
note or a rest) is represented by the type of symbol.
Furthermore, notes are grouped into bars, where each bar
corresponds to a unit of time determined by an underlying
pulse in beats per minute (BPM). In other words, a score
provides relative timing information. Finally, instructions
about intensity are placed above or below small groupings of
notes.

An obvious idea for reading the swarm is to allow
particles closer to the viewer to represent louder notes, and
‘higher’ particles to represent higher-pitched notes.

The interpretation of time is not so evident. Suppose the
time dimension of music space corresponds to the time
separation ∆t between the start of successive events. Then
particles further to the observer’s right correspond to notes of
a longer duration. Each snapshot (or frame) of the swarm
after a complete update then represents a succession of
events played in some pre-determined order, and occupying a
time interval equal to the sum of the individual ∆t’s of each
event. Any underlying beat will arise as an emergent property
of the swarm, depending on the spatial relationship between
the particles, and not on the absolute position.

To summarise, the swarm moves in n-dimensional phase
space, but only the position coordinates are used for a
mapping to music space [7]. Music space is populated by
musical events, each one of which corresponds to a note
played at a certain time and with a definite loudness. The
three axes of music space are therefore loudness, pulse and
pitch. Figure 2 shows a single event in music space. The
event corresponds to middle C (C3), played at loudness MIDI
68, and sounding at a time interval corresponding to a beat of
120BPM after the preceding event. MIDI note and loudness
values range in integral steps from 0 to 127, but we may wish

our MIDI events to lie within a smaller range. Pulse is also
restricted to a range between some arbitrary minimum and
maximum BPM. In other words, (music space) event
coordinates {Xj} = (Xloudness, Xpulse, Xpitch) are constrained to
lie in the interval [Xj min, Xj max].

Xloudness

Xpitch

Xpulse

120

68

C

FIGURE 2 AN EVENT IN MUSIC SPACE

Formally, interpretation is a mapping I: {xj} → {Xj} from
the position space of the particles to the music space of
events. There is, however a problem, since the particle swarm
is unbounded in position space, but music space is bounded.

To solve the problem, if we stipulate that target
coordinates xtarget must lie within a target cube {0 ≤ xj ≤
xmax}, then the particles will, given enough time, swarm
inside this cube as long as there is attraction to the target.
Positions in this cube can then be linearly mapped to music
space. Particles that are temporarily outside the cube can be
interpreted by projection onto the nearest boundary.

Notice also that the boundaries of music space are
adjustable parameters which enable SWARMUSIC to be
‘tuned’ for a particular environment or context. This might be
useful if notes below some MIDI value are inaudible, or if
SWARMUSIC wants to contract its pitch values to the range
of a particular instrument, for example double bass.

The mapping x1 → Xpulse is actually nonlinear in event rate
(i.e., linear in 1/ ∆t) since this corresponds better to our
perception of pulse, but is linear in pitch and loudness.

Directly after interpretation to MIDI, there is much
control over how these events are actually sent to the
synthesizer. For example, events could be queued and played
in block as a chord, or they could be queued and played in
order of pitch, or notes can be played staccato… there are
many possibilities. These are matters of style; it may be a
requirement that SWARMUSIC improvises within the broad
constraints of a musical style. The style can be quantified
into a number of style parameters [7].

The capture algorithm searches for musical events in the
audio stream and parameterises them into start time, end
time, loudness and pitch. (The fundamental pitch is extracted
through a Fast Fourier Transform. There is scope here for
future enlargement of music space to include timbral
parameters, and to allow swarming in these dimensions too.)
A target is then placed (or moved) in music space with
coordinates determined by these extracted parameters, which
amounts to inverse interpretation. The exact placement of the
target and adjustment of style parameters is determined by a
script – an algorithm that organises and controls the complete
process of capture, updating, and interpretation.

The interaction between human and machine is provided
by the swarming motion around the target, giving the musical
sensation of listening and responding, whilst the swarm’s
own uncertain dynamics provide novel musical ideas.

V MUSICAL RESULTS
It is very hard to quantify musical output, but in this section
we will describe two notable recordings, one of which
demonstrates SWARMUSIC’s own improvisational
language, and one which was a particularly successful duet
with a singer [8, 9].

In both cases, a swarm of five particles was released in n =
3 dimensions from random starting positions and velocities,
with a single target. The acceleration constants were
determined as fractions of certain limit values, except for pcore
which was set arbitrarily to 1.0. The target cube dimension
xmax was set to 128.0. These choices for pcore and xmax were
made for interpretative reasons [7]. The clamping velocity
vmax was also chosen as a fraction xmax. The limits to the
acceleration constants were determined by the requirement
that position updates should be on a scale commensurate with
xmax. The relationships are set out in tables 1 and 2.

TABLE 1 LIMITS TO ACCELERATION CONSTANTS

Cavoid lim plim acore lim Cattr lim vmax lim

2xmax pcore
2 n1/2x max 2xmax 2 n-1/2 Xmax

TABLE 2 VALUES FOR UPDATE PARAMETERS

USED IN RECORDINGS

Ctarget, Ccentre Cavoid pcore P
0.5Cattrlim 0.5Cavoidlim 1 0.5plim

acore vmax xmax

0.25acorelim 0.25vmaxlim 128

The graphs that follow show a plot of a single coordinate
(interpreted as MIDI pitch value) for each particle as a
function of time in update units (one unit = one iteration).
Each dot in the graphs corresponds to a single particle and
the continuous wavy line and continuous straight lines are
plots of the pitch coordinate of the swarm centre and target
centre respectively.

A. Solo Improvisation

This example was produced using a script which randomly
resets a target in the target cube when the separation from the
swarm centre to the target is less than 10 units. In addition,
the style parameters were set by the script so that a three note
chord was played with probability 0.25, and, with the same
probability, the swarm was interpreted in ascending order of
pitch. Recording 1 lasts for just over two minutes and a plot
of pitch against time is given in Figure 3.

The most prominent feature of the recording is that the
melody swings repeatedly from low-pitched notes to mid-
range notes, and at a fast tempo. The melodic shape is clearly
visible in Figure 3. The particles in the swarm stay close
together, following the path of the swarm centre as it
oscillates about the target. This produces the melodic shape.
The period of oscillations is 5 – 7 seconds (the horizontal

axis in Figure 7.5 is calibrated in update units – five events
are played in real time for each update), which can be
discerned in the recording as the time between very low-
pitched events.

FIGURE 3 SOLO IMPROVISATION

Another feature of the plot which can be heard quite easily

is the ascending series of notes occurring just after update 18,
between 15 and 17s from the start of the track. This coincides
with a target jump to a high pitch value. The very high notes,
beyond MIDI 120, do not sound on the synthesizer, and gives
rise to longer gaps between notes at the top of the two
‘spikes’ above the target .

At 25 seconds from the start, the target jumps back to a
low pitch. The swarm follows this new musical direction
very quickly, responding with a four note falling phrase
ending with some rumbling low notes just one second later.

The piece also ends with an upwards jump to a target (right
on the edge of the target cube) at iteration 167. There is a
longer gap between notes as the swarm flies outside music
space and becomes inaudible, before the target falls again
and the swarm plays a rapid rising figure. This ends the
recording.

Swarming can be heard in the other two dimensions too,
but is not so prominent. An oscillation in loudness and
rhythm is also occurring, but the amplitude is small. This
makes the improvisation very expressive. The small
variations in pulse impart swing, and the changes in loudness
are very reminiscent of human performance. The occasional
chord and ordering of notes into scalar groups also add to the
sense that the music has been produced by an intelligent
improviser.

B. Duet With Singer

This recording is a duet between a singer, Robin Higgins, and
SWARMUSIC. The same style script from the solo
improvisation is used, but this time the target is placed by the
capture algorithm. The improvisation, which lasted for 2
minutes and 36 seconds, was recorded after five minutes of
familiarisation between the singer and SWARMUSIC. A plot
of pitch against update number is given in Figure 4.

The recording is noticeable for its evenness – there are no
abrupt changes from either performer. Figure 4 shows that
the target placement is between MIDI 52 and 74. The

external events are mainly in the range MIDI 53 to 65. The
SWARMUSIC is playing mostly quavers at 120 BPM, with
occasional bars of crotchets, and there are small dynamic
variations from both performers.

FIGURE 4 DUET WITH SINGER

The piece starts with SWARMUSIC playing a remarkable

four bar melody in the key of Bb, which has been transcribed
using music notation in Figure 5.

FIGURE 5 OPENING MELODY

Robin’s first note is D, occurring just at the start of bar 5,

some 7 seconds from the start. The response to this is an
increase in pulse, pitch and loudness, but the sense of tonality
is lost as the SWARMUSIC plays without a clear tonal
centre.

The next phrase from the singer consists of three ascending
notes, E, G and A. At this point, SWARMUSIC starts to play
higher and noticeably quieter (updates 17–19 of Figure 4 and
bars 13-14 of Figure 6). The tonality in bar 13 is C major or
A minor, which agrees with the singer’s harmony.
SWARMUSIC continues with a sequence of chords (bars 15-
16).

FIGURE 6 SWARMUSIC’S RESPONSE TO AN ASCENDING PHRASE

Overall, the improvisation sounds like an equal

collaboration, and bears many features in common with
improvisations amongst humans: although there are periods
with a common purpose but there is also conflict, and this
enhances the music. The singer was deliberately given very

little time to acquaint himself with SWARMUSIC’s
characteristics. The singer commented: “The striking
characteristic of the swarm is its sensitive responsiveness –
like a good improvising partner, it picks up musical
structures I gave it, and were I more attuned to its behaviour,
might well give me in return a feedback which I could use
more effectively” [10].

VI CONCLUSIONS
This work demonstrates that novel interactive and
improvising musical systems can be developed from swarm
and flock algorithms. Furthermore, such an approach has the
best chance of success if the interaction is expressive.

The solo improvisation is exciting and resourceful – it is
hard to believe that this is not of human origin. Organisation
is apparent in the improvisation even though none was
programmed: musical structure is an emergent property of
the musical swarm. This recording demonstrates that
SWARMUSIC has a rich musical language of its own.

The duet with a singer displays interaction, and the result
is a coherent (and moving) piece of music. This goes some
way to validating the conjectures that improvisation succeeds
through expressive coupling. Certainly SWARMUSIC seems
capable of free improvisation.

SWARMUSIC is the first use of swarm intelligence in a
computer music application, and is interactive and
improvisational. The key to SWARMUSIC’s ability to
interact lies in the attention to expression. This already
distinguishes SWARMUSIC from other interactive musical
systems. SWARMUSIC can be said to improvise since it
composes in real time, and without revision. Furthermore, the
swarming behaviour leads to musical patterns which give the
improvisations a sense of coherency. SWARMUSIC seeks to
interpret, rather than generate according to an encoding of
musical knowledge. In this sense, it is some way towards an
I-type approach. SWARMUSIC is also highly adaptable. The
use of scripts means that more refined scripts and
combinations of scripts can be developed.

SWARMUSIC has great potential as a solo improviser, as
a collaborator, and can even be played as an instrument with
real time adjustment of style, animation and script.

References
[1] Miranda E.R. “Composing Music with

Computers,” Oxford: Focal Press, 2001
[2] Bentley P.J. and Corne D.W. “Creative

Evolutionary Systems,” San Diego: Academic
Press, 2001

[3] Winkler, T “Composing Interactive Music,”
Cambridge, Mass: MIT Press, 2001

[4]

Reynolds C.W. “Flocks, herds and schools: a
distributed behavioural model,” Computer
Graphics, Vol 21, pp 25-34, 1987

[5]

Kennedy J. and Eberhart, R.C. “Particle Swarm
Optimisation,” Proceedings of the IEEE
International Conference on Neural Networks,
IV, pp1942-1948, 1995

[6] Kennedy J. and Eberhart R.C. “Swarm
Intelligence,” Morgan Freeman, 2001

[7] Blackwell T. M. “Making Music with Swarms,”
MSc thesis, University College London, 2001

[8] Blackwell T.M. track1, “Swarm Music”
ownlabel cd 001, 2001

[9] Blackwell T.M. and Higgins R. track3, “Swarm
Music” ownlabel cd 001, 2001

[10] R.Higgins, private communication, 2001
[11] Blackwell T.M. and Bentley P.J. “Don’t Push

Me! Collision-Avoiding Swarms”, submitted to
CEC-2002

[12] Bonabeau E., Dorigo M. and Theraulax, G.
“Swarm Intelligence: From Natural to Artificial
Systems” Oxford University Press, 1999

