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locked in a timewarp of platitudes, vague
design procedures, and problem-specific
design rules."

Abstract:  This paper describes a prototype
design system which uses a genetic algorithm
to evolve new conceptual designs from scratch
(i.e. without the input of preliminary designs).
The system is applied to a set of design tasks
which are 'hard' for a genetic algorithm: the
design of optical prisms. These demonstration
problems consist of the generation of
appropriate geometries for optical prisms to
allow light to be directed through them
according to various design specifications.
Despite the deceptive nature of the problem
for evolutionary search, the system is shown
to create numerous types of prism
successfully, either performing the whole
design process entirely itself, or assembling
new designs out of smaller, previously evolved
components.

A computer system capable of supporting this
creative design process would help human
designers produce better designs, faster, by
presenting a range of new alternative designs.
Moreover, a computer is not limited by
'conventional wisdom', so it could generate
original designs based on entirely new
principles.

This paper describes a prototype system
capable of creating new designs and iteratively
optimizing these designs, using a genetic
algorithm (GA). The system is generic, i.e.
capable of the creation and optimization of the
geometry of a wide range of three dimensional
solid objects. Instead of the more traditional
approach of concentrating solely on the
conceptual design stage, this system performs
the whole design process without explicitly
dividing the process into artificial stages.
Indeed, as noted by Pham [18], there is no
easy way to determine when creative design
stops and the optimization of the design
begins.

Keywords: genetic algorithms,
evolutionary search, conceptual design, optical
prisms

1.  INTRODUCTION

The engineering design process performed by
a human designer can be generally
summarised as consisting of the following
stages [8,11,18]:

Previous work has investigated the application
of this design system to simple, example
design tasks [3], e.g. the design of a table [4].
In this paper, to explore (and hopefully
overcome) current limitations of the system, it
is applied to a set of 'hard' problems for a GA:
the creation of suitable geometries for various
optical prisms to allow light to be directed
correctly through them.

1. preliminary or conceptual design
2. detailed design
3. evaluation
4. iterative redesign, if the evaluation results

are unsatisfactory

To date, computers have been used
successfully for all of these stages except the
first: conceptual or creative design [8,11]. As
stated by Goldberg [11]: "The creative
processes of engineering design have long
been regarded as a black art. While the engine
of analysis steamrolls ever forward, our
understanding of conceptual design seems

2.  BACKGROUND

Although research into the subject of design
optimization is common [17], the area of
automated creative design is still relatively
unexplored. Relevant work in this area
includes not only previous attempts to

1



Engineering Design and Automation 2:3   1996 John Wiley & Sons, Inc.

generate designs, but also the creation of
artistic images.

algorithms) is growing in popularity amongst
some artists. For example, Todd and Latham
have successfully evolved many three
dimensional 'artistic' images and animations
[20]. Their two-part system, consisting of
'Form Grow' and 'Mutator' uses an
evolutionary strategy which creates and
modifies shapes composed of 'artistic'
primitive shapes (e.g. spiral, sphere, torus).
John Mount shows his 'Interactive Genetic
Art' on the internet (at
http://robocop.modmath.cs.cmu.edu. 8001).
This work uses a GA to modify fractal
equations that define two dimensional images.
Additionally, the biologist Richard Dawkins
has demonstrated the ability of computers to
evolve shapes resembling those found in
nature [7]. Using a simple evolutionary
strategy that modifies shapes arranged in tree-
structures, he has produced images resembling
the shapes of life-forms, e.g. 'spiders', 'beetles',
and 'flowers'.

2.1 Creative Design by Computers
Early work concentrated on the cognitive area
of creative design automation [8,9], i.e.
attempting to make a computer 'think' in the
same way as a human, when designing. Such
systems attempted to create descriptions of
designs at an abstract level, typically using an
expert system to 'design'. For example, Dyer's
'EDISON' [9] represented simple mechanical
devices such as doors and can-openers
symbolically in terms of five components:
parts, spatial relationships, connectivity,
functionality and processes. Another approach
consisted of invention based on 'visualising
potential interactions' [22]. This generated
descriptions of designs in terms of high-level
components and the interactions between
them, using qualitative reasoning and
quantitative algebra. Unfortunately, such
methods can typically only deal with highly
simplified designs [18]. However, all of these art creation systems

require the images being evolved to be
evaluated by a human (i.e. artificial selection).
Moreover, despite the fact that some of these
systems can produce some complex three
dimensional shapes [20], none of them have
been used to produce anything more than
'pretty pictures'.

More recent work in this area has used
adaptive search techniques such as the genetic
algorithm (GA), to evolve new designs. For
example, Michielssen [16] describes an
approach for designing optimal multilayer
optical filters using a GA. However, closer
inspection reveals that the system optimizes
existing preliminary designs rather than
genuinely creating new designs. Pham [18]
reduces the complexity of automated creative
design by presenting the computer with a
number of high-level design building blocks
for transmission systems, such as rack and
pinion, worm gear, and belt drive. A GA is
then used to order these elements and thus
create a new design.

The system described in this paper combines
the creative evolutionary techniques pioneered
by artists (and biologists) with the more
rigorous methods of automatic creative design.
This has resulted in a generic design system
which has the 'creative properties' of the art
systems and is capable of the generation of a
wide range of useful designs. Furthermore, it
is the 'innovative flair' [10] of the genetic
algorithm that gives the system such
capabilities.Perhaps the work that can most accurately be

described as creative design is the recent work
of Rosenman [19], who attempts to evolve new
floorplans for houses. Two dimensional plans
are 'grown' using a simplified GA to modify
'cells' organised hierarchically using grammar
rules. However, the system requires much
problem-specific knowledge and the elaborate
representation used may actually prevent
complex shapes from being formed.

3.  THE GENETIC ALGORITHM

In addition to its use in creative design and art
systems, the adaptive search algorithm known
as the genetic algorithm (GA) has become
widely used for the more traditional problem
of design optimization [1,14,21]. In this and
many other domains, the GA has been shown
repeatedly to be a highly flexible stochastic
algorithm, capable of finding good solutions to
a wide variety of problems [10,13].

2.2 Artistic Image Creation by
Computers
The use of computers to create art (usually
with GAs and similar adaptive search
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Figure 1  Clipped stretched cubes.

The GA is based upon the process of evolution
in nature [13]. A population of solutions to the
problem is maintained, with the 'fittest'
solutions (those that solve the problem best)
being randomly picked for 'reproduction' every
generation. 'Offspring' are then generated
from these fit parents using random crossover
and mutation operators, resulting in a new
population of fitter solutions [13]. As in
nature, the GA manipulates a coded form of
the parameters to be optimized, known as the
genotype. When decoded, a genotype
corresponds to a solution to the problem,
known as a phenotype.

4.1 Representation of Designs
In order to allow a computer to create and
optimize the complete shape of a design, the
design must be fully described by some form
of representation. Since the system is intended
to be capable of optimizing the shape of any
three dimensional solid object, this
representation must be able to fully describe
any such object. Not only that, however, the
representation must also be suitable for
manipulation by genetic algorithms, to allow
any such represented design to be modified in
any way.

After some investigation, it was discovered
that the requirements for a generic solid object
representation to be manipulated by a genetic
algorithm differ considerably from
requirements where the representations are to
be manipulated by a human [2]. A computer-
aided-design (CAD) package requires that
designs should be very easy to modify by users
- it does not matter how complex the
underlying representation is. For a generic
evolutionary design system, it is the genetic
algorithm that must modify the designs. Thus,
the representation must use as few definition
parameters as possible (to minimise the
corresponding search space), whilst allowing
designs to be easily modified in any way (to
allow steady evolution). In other words, the
design-space to be searched by the GA must be
carefully specified to ensure that similar
designs are always 'close' to each other in the
space. This is not the case in many standard
representations used in CAD (e.g. constructive
solid geometry, where changing a single
parameter value can radically alter a design).

Genetic algorithms are typically initialised
with a completely random population (i.e.
every member of the population having
random genotypes, and thus random
phenotypes). Even if this was not the case (e.g.
if an existing solution was to be optimized),
because of the random search operators, the
end result often cannot be predicted [10]. GAs
typically converge to good or 'fit' solutions to
problems, but not necessarily to a globally
optimal solution.

4.  PROTOTYPE EVOLUTIONARY
DESIGN SYSTEM

The design system outlined in this paper
consists of three elements:

1. A suitable representation of solid objects
to allow the computer to manipulate
candidate designs effectively during the
design process.

2. A modified genetic algorithm to evolve
such represented designs from scratch. Many existing representations were examined

closely (e.g. polygon mesh, Hermite, Fourier,
Bézier, constructive solid geometry,
sweeping), with the conclusion that the most
suitable form of representation is 'spatial

3. Evaluation software to guide the evolution
process.
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partitioning' [2]. However, since most
partitioning methods require large numbers of
definition parameters and are only capable of
crude approximations of some surfaces, a new
variation was created for this work. This
combines ideas from the commonly used
constructive solid geometry (CSG) and
standard spatial partitioning methods, by
allowing every partition, or primitive, to vary
in size and position, and to be intersected by a
plane of variable orientation, see Fig. 1. These
highly flexible primitives, when used in
combination, are capable of closely
approximating any 3D (and 2D) solid object
whilst requiring very few definition
parameters. As with standard spatial
partitioning representations, a design is
represented by a number of these non-
overlapping primitives. More specifically, a
design is considered illegal if it has primitives
which overlap to any extent. Software to
enforce these rules is contained within the
design system [3].

distinction and actually evaluate genotypes
directly, by having a mapping stage, a simple
coded design can be mapped to a complex
actual design. The system uses this, when
required, to generate symmetrical designs by
reflecting designs in one or more planes
during the mapping process. In this way, a
complex symmetrical design need only have
the non-reflected portion manipulated by the
GA, thus reducing the difficulty of the design
task for the GA. Additionally, this mapping
stage is used by the system to enforce the rules
of the solid object representation, by mapping
illegal designs to legal designs (i.e. a design
with overlapping primitives is corrected by
'squashing' such primitives until they touch
instead of overlap).

A second point of note concerning the GA is
the use of multiobjective optimization
techniques, to allow multicriteria design
specifications to be handled effectively.
Various alternative multiobjective ranking
methods were explored and compared in
detail, with a new method created for this
work producing the most consistently good
results [5]. The resulting multiobjective
genetic algorithm can deal with any number of
separate objectives, automatically scaling
separate fitness values during evolution in
order to allow all objectives to be treated
equally, or according to user-specified relative
importance values.

4.2 Evolution of Designs
To allow the manipulation of designs
represented in this way, a genetic algorithm
forms the core of the prototype evolutionary
design system. This GA is initialised with a
population of random designs (i.e. starting
from scratch). The algorithm then begins an
iterative process of evaluation and
reproduction to generate new populations of
increasingly better designs. Alternatively, the
system can generate new designs using given
components, by seeding the initial population
with randomly positioned design components,
and then continuing as before. By fixing all
parameters specifying depth, two-dimensional
designs can be created in addition to three
dimensional designs. (This ability to evolve in
two dimensions is highly beneficial for a
subset of suitable two-dimensional design
problems, however most design applications
typically require evolution in three
dimensions.)

The third notable aspect of the GA is the way
that new populations of solutions are
generated. A standard GA replaces the whole
population of solutions with an entirely new
population, every generation. This can mean
that a single, very good solution is lost before
it can contribute sufficient offspring to future
generations. Perhaps more distressing
however, is the fact that during the final stages
of evolution, solutions can actually get worse,
instead of better. An alternative algorithm
known as the 'steady-state' GA [10] does exist
to tackle these problems. This algorithm only
replaces solutions in a population with better
solutions (i.e. 'killing' the least fit). However,
it does not pick the fittest members of a
population for reproduction, so the selection
pressure is considerably reduced, resulting in
slower evolution. The hybrid GA used within
the design system uses a similar replacement
method to the steady-state GA, in that less fit
solutions are usually replaced by more fit
solutions, but additionally, the fittest are
picked for reproduction (i.e. a steady-state GA

Although initial experiments were performed
with a version of Goldberg's 'simple GA' [10],
this was soon found to be inadequate [4,5].
The genetic algorithm currently used is a
hybrid of a number of different types of GA.
Perhaps the three most notable aspects of the
GA are as follows: firstly, an explicit mapping
stage between genotypes (coded designs) and
phenotypes (designs) is maintained within the
algorithm. Although some researchers blur the
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with preferential selection). This means that
designs evolved by this GA can only improve,
and that the speed of the evolution process is
not reduced.

new evaluation software (or interfacing to
existing software). Importantly, all such
software must only specify the function of the
desired design. Should any part of the software
specify the shape directly, the system is again
constrained against original design.The GA modifies the genotypes of designs by

using standard, single-point uniform crossover
(i.e. crossover at a single, random point) to
generate two offspring from each pair of
parent solutions. Mutation occurs with a
probability of 0.05, simply 'flipping' a random
bit in the genotype. Every primitive shape
requires nine definition parameters to specify
its 3D position, width, height, depth, and
orientation of its clipping plane. Hence, the
genotype consists of a pre-defined number of
multiples of nine parameter values, coded as
16-bit binary numbers. For example, a two-
primitive design requires eighteen parameters
and a genotype of 288 bits. Alternatively, a
two-primitive symmetrical design (i.e. a
design that has been reflected in a plane to
make it symmetrical) requires only a partial
design of one primitive (nine parameters)
coded in the genotype as 144 bits. Because no
hard constraints are used (i.e. every possible
genotype is mapped to a phenotype of some
description), the search-space is continuous.
Inevitably, however, the more primitives the
user decides to allow in designs, the larger and
more difficult to search this search-space will
be.

Previous work has involved the creation of
various modules of evaluation software, to
allow the evaluation of designs for features
such as size, mass, flatness, and stability under
gravity. These have been used in combination
to demonstrate the generic capabilities of the
system to evolve solutions to various example
design tasks [3,4,5]. In this paper, the system
is required to design various types of optical
prism. To specify the function of most types of
prism, three main modules of evaluation
software are required. One module specifies
the upper and lower boundaries of the size of
designs, another defines the input to and
required output light characteristics from the
designs, and a third specifies the fact that
designs should be unfragmented.

MODULE 1: LIMITS UPON SIZE
Perhaps the most basic requirement for any
design is that of appropriate size: a penta
prism for a camera must not be larger than the
camera itself. The size of the design is
specified by minimum and maximum extents
for the left, right, back, front, top and bottom
of the design, see fig. 2. The fitness of a
candidate design decreases the further its
extents fall outside the specified limits.

4.3 Evaluation of Designs
To allow the GA to pick 'fit' solutions from the
current population for reproduction every
generation, the decoded solutions (the
phenotypes) must be evaluated. To achieve
this, evaluation software is used. By using
software to evaluate designs, a human
designer is saved the task of laboriously
judging thousands of evolving candidate
designs. Moreover, the potential for originality
by the system is increased by removing the
possible limitation of the 'conventional
wisdom' of human designers.

Figure 2  Desired minimum and maximum
extents (shown by dotted lines)

of evolved design.
Most design problems can be broken down
into a number of separate criteria (e.g. the
most basic of these being correct size and
mass). By creating 'modular' evaluation
software, with each module capable of
evaluating any suitably represented design for
a particular criterion, complete design
problems can be specified by a combination of
such modules. In this way, new design
applications can be specified using mostly
existing modules and require a minimum of

Although this module defines a constraint
rather than an objective, it is implemented as a
soft constraint, i.e. designs of unsatisfactory
size are penalised with poor fitness values,
rather than being prevented from existing. The
definition of acceptable limits of size allows
other related criteria, such as the size of the
reflected image and the distance the light
should travel from source to destination, to be
specified.
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Figure 3  Specifying input and output light characteristics.

become detached from the main part of the
design, fig. 4. This is possible because the
positions of primitives are defined
independently of each other. Since the system
is required to create a single prism at a time,
all designs must be unfragmented.

MODULE 2: RAYTRACING
Optical prisms are designed to bend and
refract light from source to destination along a
specific path and in a specific way in order to
perform their various functions. In order to
give the design system complete freedom
during the design process, this software
module does not directly specify the path the
light should take. Instead, a light source and
initial direction vector is given. This 'light ray'
is then traced through the current design being
evaluated (using standard ray-tracing
techniques) and the emerging ray intersected
by a specified 'projection plane'. The output
direction and destination point of the ray is
then compared to the required direction and
destination point to allow calculation of the
fitness of the design, see fig. 3.

Figure 4  A design is fragmented if a
primitive has become detached from the main

part of the design.

Fragmented designs are detected by creating a
network of the primitives and their
connections in a design. A primitive is
connected to another if it touches another.
Two primitives are detected as touching by
calculating the lines formed by the intersection
of all planes forming the sides of the
primitives. These lines are then clipped to
both primitives - if one is not clipped out of
existence, the two primitives must touch. By
using efficient clipping routines in this way,
this process is very fast. Once the network is
formed, it is traversed recursively. Any
primitive that is not part of the main design
will not be visited, meaning that the design is
fragmented.

The further the actual direction vector differs
from the required direction vector, the less fit
the design is. Likewise, the further the actual
destination point of the ray is from the desired
destination point, the worse the fitness of the
design. Any design with output direction
vectors so incorrect that they do not intersect
the projection plane at all (resulting in no
destination points) is penalised heavily.
Normally five 'rays' are used to specify the
four corners of an image and a centre point.
This allows the size and orientation as well as
the position of the required output image to be
specified. For some types of prism, additional
criteria are required, e.g. no refraction
permitted. Designs that do not conform to
these additional criteria are penalised with
very poor fitness values.

This criterion is implemented as a soft
constraint, with fragmented designs being
penalised very heavily. A large relative
importance is also specified for this criterion,
meaning that this is usually the very first
criterion to be evolved correctly in a design.

MODULE 3: UNFRAGMENTED
A design is considered fragmented if one or
more of the primitives that represent it have
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Figure 5  Correct rhomboid prism (a), failed rhomboid prism attempts (b,c,d).

significant loss of realism for most
applications.5.  EVOLUTION OF OPTICAL

PRISMS
Prisms are used in many optical devices, for
numerous reasons. Binoculars require a prism
erecting system to both 'squash' their overall
length to a more manageable size, and to keep
the images erect (in the same orientation as
the object being viewed) [6]. Periscopes
require derotating prisms to keep the image
erect for the observer, no matter to what
degree they are rotated [15]. An SLR camera
requires a constant-deviation prism (usually a
penta prism) to ensure that the deviation of the
optical axis is unchanged by rotation of the
prism [6]. Whilst mirrors can also be used for
these tasks, prisms have a number of
advantages. Firstly the relation between their
reflecting faces is not subject to change
because of mechanical misalignment or
movement. Secondly, dust does not affect
reflectivity in the same way as with mirrors,
and finally, when total internal reflection
occurs within a prism, reflectivity is higher
than can be obtained with a mirror [6].

To investigate the current capabilities of the
prototype system, a 'hard' example design task
was set: to evolve a variety of different types of
optical prism. This problem was chosen for
two reasons: first to demonstrate that the
system can successfully create designs using
the full representation described earlier.
(Previous versions of the system have only
used a simplified version of the representation,
using primitives without intersecting planes
[3,4,5]. Using planes to 'slice' portions off
primitive shapes enhances the ability of the
representation to define solids, but increases
the number of parameters that need to be
considered by the system.) Second, by using
this problem, the abilities of the system to
evolve good solutions to problems deceptive to
GAs can be explored and improved.

This section explores the problem and
discusses why it is deceptive to GAs. Typical
evolved designs of seven different types of
prism are then described. 5.2 Deceptive Problems

For a genetic algorithm, it is 'more difficult' to
evolve good solutions to certain types of
problem [12]. Such problems are termed
deceptive for GAs, with many readily
accessible local minima or deceptive
attractors, and a single, hard to reach global
minima. It transpires that certain types of
prism design problem are deceptive for GAs.
For example, consider the rhomboid prism
which acts like a naïve periscope, fig. 5a.
Initially, light is reflected upwards, then it is
reflected again to travel across to its
destination. If either the top or bottom
reflection is absent (fig. 5b, 5c), or if the two
primitives making up the design are not
correctly aligned  (fig. 5d), the design fails. In
other words, every part of the design relies
completely on all of the other parts of the
design to be correct for the prism to work
correctly as a whole.

5.1 Optical Prisms
An optical glass prism can have three effects
on light directed through it. Depending on the
refractive index of the prism, the wavelength
of the light and the angle at which the light
hits a surface of the prism, the path of the
light will be unaffected, refracted (i.e. bent) or
reflected. For the design tasks described in this
paper, only monochromatic light (light of a
single wavelength) is considered, with surface
reflections being ignored. These restrictions
are purely to simplify and speed up the
evaluation process; more realism could be
introduced by repeatedly evaluating designs
using light of varying wavelengths. Surface
reflections are usually insignificant with
optical prisms (as opposed to total internal
reflections) and can be safely ignored without
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Figure 7  Four examples of initial two-primitive random designs.

to be generic, specialising the GA for a single
class of problem is not a desirable solution.Although designs such as those shown in fig.

5b and 5c could be combined to form a perfect
rhomboid prism, the GA would rarely pick
these designs for reproduction. This is because
both of these designs are very unfit compared
to the deceptive attractors [12] to the problem,
see fig. 6. Being simpler designs, deceptive
attractors are statistically far more likely to be
created by chance than any close
approximation to the rhomboid prism. The
fitness of these designs is reasonable, and so
any GA, picking the best for reproduction
(and/or 'killing' the worst), almost always
ensures that it is this type of design that
predominates in future populations. Thus,
designs such as those shown in fig. 5b and c
are quickly eliminated from the population in
favour of the deceptive attractors, before the
good features of the less fit designs can be
exploited. Hence, the usual methods used in
evolution of combining features from different
good designs to create better designs is
prevented from working.

Other possible solutions involve providing
additional problem-specific information to
decrease the number of deceptive attractors
and thus lower the probability of them being
picked instead of genuinely good conceptual
designs (i.e. 'smooth' out some of the local
minima). For example, for the rhomboid
prism problem, by requiring that no refraction
takes place and specifying specific areas in
front of the design that light must not enter
(using soft constraints), the number of
deceptive attractors such as those shown in
fig. 6 is substantially reduced. This reduction
occurs because the fitness of such designs is
decreased, changing them from deceptive
attractors to poor designs (i.e. the 'fitness
landscape' of the search space is reshaped,
without introducing any search restrictions in
the space).

5.3 Evolution from Scratch
The current capabilities of the design system
were initially explored by using the system to
evolve five different types of prism from
scratch (i.e., beginning with purely random
initial designs). Beginning with the right-
angle prism, the complexity of each prism
required was increased. For any prism which
the system found 'hard' to design, methods to
encourage production of more acceptable
designs were explored. All designs except for
the right-angle prisms were defined by two
primitives of the solid object representation
(18 parameters). Fig. 7 shows typical
examples of initial, random designs prior to
evolution.

Figure 6  Two deceptive attractors to the
'rhomboid prism' problem.

The problem of designing prisms increases in
difficulty as the required path of the light
becomes more complex. The more the light
needs to be reflected inside a prism, the
smaller the number of acceptable designs, and
the larger the number of deceptive attractors.
A possible remedy to this problem is to
increase population sizes, to increase the
probability of at least a nearly correct
conceptual design appearing and hence being
picked. However, unlike nature, there are real
limits to population sizes because of limits on
computer memory and processing time. Better
results can be obtained by greatly modifying
the GA [12], but since this system is intended

Population sizes used within the GA were
varied from 100 to 400, depending on the
difficulty of the problem. All results shown
were generated after 500 generations
(although the GA had converged on solutions
to some of the simpler problems after only 50
generations). At least twenty test runs for each
design task took place, with typical results for
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each being shown. Unless otherwise stated, all
designs were evaluated using five 'light rays'
as shown in fig. 8. Input rays are shown by
arrows, output rays are displayed terminating
with circles to show the positions of the light
destination points. Light paths as calculated by
the ray-tracing module of evaluation software
are shown within the designs. For clarity, not
all rays will be shown for every result.

of refraction, which would 'blur' the colours of
the output image. By specifying that a
symmetrical design was required, the system
evolved perfect roof prisms every time, fig. 9
(right).

DEROTATING PRISMS

RIGHT-ANGLE PRISM

Figure 10  Typical 'cheating' derotating
prism attempts.

Derotating prisms rotate the orientation of an
image when the prism is rotated about the
optical axis (commonly used in periscopes).
For this problem, however, this feature was
not directly evaluated for the GA. Instead, to
keep the complexity of evaluating the designs
simple, a design that turned an image upside-
down was specified (a common feature of
many derotating prisms). To do this, any
design without the positions of its output rays
mirroring the positions of the input rays was
penalised. Unfortunately, by only partially
specifying the required design, the system was
able to 'cheat' and split images, sending each
half of the image to the correct side, but
leaving both halves the wrong way up, fig. 10.
Although the designs usually did act in the
way required by the evaluation software, many
were not true derotating prisms. In other
words, the design system was exploiting the
'loop-hole' in the design specification, to
produce the simplest types of designs it could.

Figure 8  Typical evolved right angle prisms.

The function of a right-angle prism is to
reflect light by exactly 90 degrees. Using a
single primitive of the representation, a variety
of differently oriented prisms were
successfully evolved, with highly accurate
designs being produced every time, fig. 8.

ROOF PRISM

    
Figure 9  Typical roof prism attempt (left),
perfect roof prism with symmetry (right).

The purpose of a roof prism is to bend the path
of light back in the opposite direction to the
source direction, with the destination being at
a pre-defined distance above the source. The
output light should not be erect (i.e., the
output image should be upside-down). Initial
results for this problem used ingenious
combinations of refraction and reflection to
achieve good, but not perfect, results, fig. 9
(left). Typical imperfections consisted of
inaccurately directed output rays and the use

Figure 11  Variation of a 'K' derotating prism
with symmetry (top),

nearly perfect derotating 'dove' prism
with symmetry (bottom).
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By specifying that symmetrical designs were
required, most of these 'cheats' became
unavailable, and the system successfully
evolved some nearly perfect derotating prisms.
Figure 11 (left) shows an unusual variation of
a 'K' prism which uses refraction and only a
single reflection (a normal 'K' prism reflects
three times, with no refraction). Although the
output rays are bent by refraction, this is a 'fit'
derotating prism. Figure 11 (right) shows a
traditional 'dove' derotating prism, evolved by
the system.

PENTA PRISM

RHOMBOID PRISM

Figure 13  Typical 'cheating' attempt at penta
prism (top), nearly perfect penta prism

(bottom).

The function of a penta prism is to reflect light
by 90 degrees, whilst keeping the image erect.
(Unlike a right-angle prism which reflects
light by 90 degrees, but the output image is the
wrong way up.) These prisms are almost
always used in SLR cameras to direct the light
from the mirror up to the viewfinder. This is a
more difficult problem than the rhomboid
prism problem, because, for a correct output,
the light must be reflected twice, initially in a
direction almost opposite to the final, desired
direction. Again, the system initially 'cheated',
by producing designs that were effectively
composed of two right-angle prisms joined,
fig. 13 (left). The image is split by these,
placing the top half at the top and the bottom
half at the bottom, but leaving both halves
upside-down. Unlike the similar problem
encountered with the derotating prisms,
specifying symmetry for these designs does not
help. After some experimentation, it was
found that by increasing the number of light
rays traced through the designs, and
increasing the importance of placing the rays
in the correct positions, the system was able to
evolve good solutions to this problem, fig. 13
(right). (Additionally, the system was provided
with the knowledge that the design was two-
dimensional, as described earlier.)

Figure 12  Typical rhomboid prism attempt
(top), nearly perfect 'rhomboid' prism

(bottom).

The purpose of a rhomboid prism is to reflect
the light entering it, so that the light emerges
in the same direction and orientation, but at a
specified distance above the source (used in
less expensive binoculars). As mentioned
previously, this problem has many deceptive
attractors to it, meaning that the typical design
produced is as shown in fig. 12 (left). Since
specifying symmetry does not help in this
case, different problem-specific knowledge
was introduced to the evaluation software. It
was found, after some experimentation, that
the system could evolve good solutions to this
'hard' problem by penalising any designs that
refracted the light, and specifying that the
designs should be two-dimensional, fig. 12
(right). The latter did not need to be rigidly
enforced: parameters specifying depth and
position on the Z-axis were simply initialised
with a set value instead of a random value, but
were not fixed thereafter (i.e., the system
could, and did, change these values).

10
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5.4 Evolution from Previously
Evolved Components

ABBE AND PORRO PRISMS

As demonstrated above, by giving a more
detailed problem specification within the
evaluation software it is possible to make the
system evolve good solutions to deceptive
design problems. However, when the difficulty
of the problems are increased further, the
designs of the system deteriorate in quality
and it becomes clear that just giving more
details is insufficient - a different approach is
required.

This new approach consists of initialising the
system with previously created components of
designs, and allowing the system to evolve the
optimal positions for these components. For
these prism design problems, suitable
components are right-angle prisms. Since the
system can itself create right-angle prisms, it
seems appropriate to solve more difficult
problems in two stages: first evolve the
components, then evolve the placement of the
components. Hence, for the second stage the
system starts with a selection of differently
orientated, previously evolved right-angle
prisms at random positions relative to each
other, see fig. 14.

Figure 15  Almost perfect abbe prism (top),
almost perfect porro prism (bottom).

The purpose of abbe and porro prisms is to
provide a large distance from source to
destination for the light to travel, whilst
containing the entire path of the light in a
small package. The output image must be kept
erect (i.e., in the same orientation as the input
image). These prisms are typically used in
high quality binoculars. The system was first
used to evolve various differently orientated
right-angle prisms (as described previously).
Using populations of 400 individuals evolved
for 500 generations in the GA, these
components were then successfully arranged
into the correct configurations to match the
input and output requirements of both the
porro and abbe prisms. The designs (defined
by four primitives of the representation) were
also optimized automatically by the system to
fine-tune the precise angles and positions of
the reflecting surfaces of both types of prism.
Resulting designs were consistently both
conceptually good, and accurate in detail, fig.
15.

Figure 14  Randomly positioned, previously
evolved right-angle prisms.

No genes are fixed, allowing the system to
determine not only the positions of the
components, but also optimize the components
themselves if required. This alternative
approach to the creation of conceptual designs
was explored by using the system to create two
new prisms with not two, but four total
internal reflections.

5.5. Summary of Evolved Results
Despite the fact that the system was used to
evolve designs for deceptive problems, the
results were all good. Usually any designs that
were conceptually flawed were created as a
result of an incomplete or flawed design
specification within the evaluation software.
For simple types of prism (i.e., prisms with at
most two total internal reflections), most
problems could be overcome by simply giving
more information. By specifying additional

11
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requirements such as symmetry, no refraction
and that designs should be two-dimensional,
the range of acceptable designs becomes more
tightly constrained, thus reducing deceptive
attractors and increasing the probability of
evolving good designs.

alternative way, to create new designs from
previously created components.

Using the system in these ways, good solutions
were evolved to all seven of the prism design
problems tackled, despite the deceptive nature
of these problems for evolutionary search. The
system was made to evolve this range of
designs, all with very different geometries,
and all conceptually different, purely by
changing the design specification in the
evaluation software and initialising the system
appropriately. Inevitably, however, results are
improved and design criteria simpler to
specify when the system is applied to other
non-deceptive applications [3,4].

However, for more complex types of prism
(i.e., prisms with four total internal
reflections) providing more information was
insufficient. The system was simply unable to
avoid the many 'cheating' deceptive attractors
to the problem, producing unusual, but
unacceptable designs. By using the system in
an alternative way, to evolve designs from
previously created components, the problem is
simplified. Although for such complex
designs, the system must manipulate 36
parameters (compared to 18 for the simpler
designs), by initialising some of the
parameters with data describing right-angle
prisms, the initial population begins at much
'closer' points to a good solution. This means
that, although all parameters are still
adjustable by the system, with less far to travel
in the search space, the system has a much
greater chance of finding an acceptable
solution. Indeed, using this method,
conceptually correct and nearly optimal
designs of greater complexity were
consistently produced.

Future work will concentrate on improving the
capabilities of the system further, by allowing
the number of primitives that represent a
design to be optimized by the GA in addition
to the geometries of the primitives. In this
way, the GA can adjust the size of the effective
search space itself by adding or removing
primitives (and hence the corresponding
definition parameters). This can be achieved
by using a mutation operator to allow groups
of nine coded parameter values to be added or
removed from genotypes (thus adding or
removing primitive shapes from phenotypes).
A crossover operator capable of meaningfully
generating offspring from chromosomes of
different lengths would then be required.
Finally, a simple modification to the system
would also allow it to automatically check for
features such as symmetry and two-
dimensionality, using them if the fitness
values of such designs are improved by them.

6.  CONCLUSIONS

This paper has demonstrated that evolutionary
search is capable not only of optimising
designs, but also creating new conceptual
designs. A prototype generic computer design
system based on a genetic algorithm was
described, capable of evolving solutions to a
wide range of solid object design problems.
The system performs the whole design
process, both generating the design concept,
and also optimizing the designs.

Having previously applied the system to other
simple design tasks [3,4,5], in this paper it
was applied to a set of optical prism design
problems which are deceptive to evolutionary
search, to explore and extend the limits of its
capabilities. It was found that for simple
deceptive problems, the system could still
generate acceptable designs from scratch if
additional information on the specification
was given. For more complex deceptive design
tasks, the system was used successfully in an
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