Exploring Component-based Representations -
The Secret of Creativity by Evolution?

Peter J. Bentley
Department of Computer Science, University College London
e-mail: P.Bentley@cs.ucl.ac.uk

Abstract. This paper investigates one of the newest and most exciting methods in
computer science to date: employing computers as creative problem solvers by using
evolution to explore for new solutions. The paper introduces and discusses the new
understanding that explorative evolution relies upon a representation based on
components rather than a parameterisation of a known sol ution. Evolution explores how
the components can be arranged, how many are needed, and the type or function of
each. The extra freedom provided by this simple idea is remarkable. By using
evolutionary computation for exploration instead of optimisation, this technique enables
us to expand the capabilities of computers. The paper describes how the approach has
aready shown impressive resultsin the creation of novel designs and architecture, fraud
detection, composition of music, and creation of art. A framework for explorative
evolution is provided, with discussion of the significance and difficulties posed by each
element. The paper ends with an example of creative problem solving for a ssimple
application - showing how evolution can shape pieces of paper to make them fall dowly
through the air, by spiraling down like sycamore seeds.

1. | ntr oduction

Similar to the field of neura computation, evolutionary computation comprises a
set of techniques inspired by natural processes. Instead of being modelled on the
workings of brains, evolutionary algorithms are based on natura evolution.
Problems are solved by using populations of solutions that ‘reproduce’, and ‘di€
according to how well they satisfy the problem, resulting in the emergence of good
solutions after a number of generations.

Despite the first evolution-based programs dating back to the 1960's, this subset
of computer science has only in the last ten years become recognised as a field of
research in its own right. Today, hundreds of researchers world-wide, numerous
departments and over twenty international conferences a year devote their efforts
to undergtanding and applying evolution to problems.

The steady increase of interest in evolution-based approaches seems to be due to
the fact that evolution provides a quick and easy way to solve difficult problems. It
is now commonplace to evolve solutions for scheduling, machine learning,
anomaly detection, ordering problems, data mining, control, game playing, reliable
and fault tolerant systems, design optimisation and many other problems [1].
Evolutionary biol ogists now use evolutionary algorithms to increase understanding
of natural evolution [2].

Evolution dlows us to overcome many of the problems associated with
searching for difficult and complex real-world solutions. But traditiona
implementations of evolutionary search suffer from the same fundamental
drawbacks as al conventional search algorithms. They rely on a good
parameterisation to permit them to find a good solution. If we are optimising a



propeler blade, but the parameterisation does not permit the width of the blade to
vary, then the computer will never be able to find solutions with different widths. If
there is no parameter for something, then the computer cannot modify it.
Evolution, like dl search algorithms, is limited and constrained by the
representation it can modify.

However, recent work has removed many of these limits and constraints. We can
now use evolution to explore further than ever before. Evolution can search for
good search spaces, even as it searches within a space. It can dter the
dimensionality of a space, the parameterisation, the representation of solutions, and
at the same time, find good solutions in this ever-changing hyperspace. Evolution
can be used to modify so much of the problem that the very concept of search
space begins to become unhepful. The advantages of such freedom of search are
plain: the evolved solutions now resemble inventions rather than improvements
[3]. And because so many of the constraints of representation are thrown away, our
computers begin to seem creative in the way they arrive at these surprising results.

2. Explorative Evolution

Most of the advances in explorative evolution have grown up on my home turf,
evolutionary design [1]. And it is easy to see why this has happened. Design
problems such as architecture, engineering design, and aesthetic design are horribly
complex, with huge numbers of (often conflicting) objectives, many constraints
and often thousands of parameters [4]. But the most difficult aspects of these
design problems are people. Designs are usually used by people - we live in
architecture, we use and interact with the things around us. We like and dislike
things amost at random, and as fashions change, so our preferences and
requirements change. This means that a design specification will usually be a
moving target [5]. It will have many unknowns, and the few things that are true
one week will not necessarily be true the next week.

Designers take such things for granted. They know that their designs will be
revised and modified many times until clients are satisfied (or until time or costs
prevent further changes). And architecture is perhaps the most extreme type of
design in this respect. There are so many different rules, opinions, preferences and
materials that for every new building, that there will be an infinite number of
possible design solutions. Exploring these solutions forms part of the difficult job
of being an architect. Consequently, it is no coincidence that the firg forays into
explorative and generative evolutionary design were made by architects. Some of
the earliest work was performed by Prof. John Frazer, who spent many years
developing evolutionary architecture systems with his students [6]. He showed
how evolution could generate many surprisng and ingpirational architectural
forms, and how novel and useful structures could be evolved. His methods often
involved the use of components such as cellular automata, which were evolved and
sometimes wrapped in surfaces to generate smooth exteriors. In Australia, the work
of Prof. John Gero and colleagues such as Dr. Michael Rosenman (both architects)
also investigated the use of evolution to generate new architectural forms. This
work concentrates on the generation of new floor-plans for buildings, showing over
many years of research how explorative evolution can create nove floor-plans that
satisfy many fuzzy constraints and objectives [7]. They even show how evolution
can learn to create buildings in the style of well-known architects [8].

Designers and architects till remain at the forefront of this area of research.



Today increasng numbers are creating evolutionary architecture systems capable
of generating novel forms, structures, buildings and even towns. For example, Paul
Coates of the University of East London has shown how evolution can generate
coherent plans for housing estates and buildings, as well as innovative building
exteriors [9]. Prof. Celestino Soddu of Italy uses evolution to generate everything
from novel table-lampsto castles to three-dimensional Picasso sculptures [10]. The
work of Dr. lan Parmee at the University of Plymouth has revealed a variety of
methods for handling the complex and fluid nature of engineering design problems
over the years[4].

Artists are also keen researchers into explorative evolutionary systems. The use
of evolution to generate form, judged entirely on aesthetics, was first shown by
Prof. Richard Dawkins in the mid 1980’s [11]. His work inspired the well-known
work of William Latham and Stephen Todd, who had considerable success in
evolving artistic images and animations [12]. The work of Karl Sims was also
inspired by Dawkins, and aso showed the astonishing complex and aesthetically
pleasing images that evolution could generate [13]. Evolutionary art systems have
now become very popular, with many programs available and some now being
incorporated into art and CAD packages [14].

All of these examples of evolutionary systems used evolution as an explorer, not
as an optimiser. Normally guided by a human, the software is used to investigate
many possible solutions, to provide inspiration and to give a fed for the range of
useful solutions. Whilst producing impressive results, such software aways
received some criticism that the presence of a human to guide the direction of
search by evolution was the key to the success of these systems. My own work in
this area, and the work of others such as Adrian Thompson and John Koza,
provided some of the first convincing demonstrations that evolution was capable of
innovation without human guidance. | showed how evolution would find surprising
and credtive solutions to design problems, even when only software guidance was
provided. By telling the computer the desired function in the form of a set of
evaluation routines, but not anything about the design itself, | removed the human
from the loop and showed conclusively the power of explorative evolution
[15],[16]. Adrian also demonstrated the power of evolution, this time to generate
novel eectronic circuit designs which were tested using field programmable gate
arrays [17]. In asimilar vein, John Koza has been demonstrating the use of genetic
programming to find novel computer programs for some years, i.e. to use
computers to program themselves [18]. Work such as this began the recent change
in thinking about evolution. No longer were we content to regard an evolutionary
algorithm as ‘another optimiser’. Our evolutionary programs were now
independently solving problems for us, and finding creative solutions that surprised
us.

Since then, research in this area has expanded rapidly. Adrian Thompson spends
his time trying to develop ways to analyse how his evolved circuits work [19].
Julian Miller has expanded upon Thompson's work, showing how evolution can
create circuits that seem to work on entirely new principles [20]. John Koza has
recently announced the completion of a 1000-processor Beowulf computer which
will be used for the sole purpose of ‘using genetic programming as an automated
“invention machine” for creating new and useful patentable inventions'. His group
has recently demonstrated the use of evolution to generate many different types of
analogue circuit, many of which mirror or outperform our best human-created



circuit designs [21]. Jordan Pollack has shown how evolution can generate highly
novel structures such as bridges and cranes [22] and has now begun to use these
methods for the evolution of robot bodies. Karl Sims used evolution to create the
bodies and brains of ‘virtual creatures capable of swimming, walking, jumping
and competing in virtua environments [23]. Husbands et a [24] used evolution to
generate nove propdler-like forms. Many research departments around the world
use evolution to generate new and highly complex neural networks for various
applications. My own work in this area continues, as | use evolution to compose
music that cannot be distinguished from human compositions [25]. (For a more
comprehensivereview of work in thisarea, see [26]).

3. Exploring the Explorer

The research described here aims to investigate explorative evolutionary
computation. To date there has been no significant research aimed at understanding
the difference between exploration and optimisation. There has been little increase
in our understanding of how evolution can innovate since we began demonsirating
this ability. This project aims to discover answers to these fundamental questions
and to explore, characterise and explain how we can use these answers to further
increase the capabilities of explorative evolutionary computation.

Thefirst question to be tackled is the most fundamental: what is evolution doing
when it explores, that it is not doing when it optimises?

Traditional views of an evolutionary algorithm regard this search technique as
an optimiser. A better term is actually ‘satisficer’ [27]. Evolution never tries to
find globally optimal solutions. It merely propagates improvements through the
population. In doing so, evolution walks a mysterious and winding path through
the search space. Sometimes this path may reach a dead-end (premature
convergence). Sometimes the path may go around in circles. And occasionally the
path may lead to a global optimal - but there is no guarantee of this. The
wanderings of evolution arelike those of an explorer.

But exactly what does evolution explore? This is determined by the
representations it uses. With a fixed-length parameterisation, explorations do
resemble optimisation. For example, if there are only three parameters defining the
solution and a single fitness function, evolution will behave in much the same way
asan optimiser - it will find the best values for those three parameters such that the
solutions are as fit as possible. But with a different kind of representation, the
behaviour of evolution changes. When the parameters do not define the solution
directly, when they define a set of components from which the solution is
constructed, the idea of optimisation becomes inappropriate. Now evolution
explores new ways of constructing the solution by changing the relationships
between components. It can vary the dimensionality of the space by adding or
removing elements. It can explore aternatives instead of optimising a single
option. When we examine the representations, objectives and goals of optimisation
and exploration, the difference between these approaches becomes clearer:

Optimisation: A knowledge-rich encoding of the problem is used, i.e. a solution is
parameterised using the fewest possible parameters (and thus both minimising the search
space, but also minimising potential for exploration). Evolution is used only to find the best
parameter values within that parameterisation. Objective functions are normally predefined
and fixed. The goal is to find a global or near global optimum with minimal computation.



Exploration: A knowledge-lean representation is used, and instead of a parameterisation of a
solution, a set of low-level components is defined. Solutions are then constructed using the
components, allowing exploration (sometimes at the expense of size of search space and
ability to locate optima). Objective functions may vary at any time. The goal is to identify new
and interesting solutions - normally more than one is desirable - and these solutions must be
good. However, finding global optima may be undesirable, impractical or even impossible.

This difference between optimisation and exploration is rarely considered, let
alone defined. And yet when the literature in this area is examined, it becomes
evident that every system that performs exploration uses this component-based
representation. Researchers who evolve architecture use evolution to manipulate
components such as walls or bricks. Researchers who evolve eectronic circuits use
evolution to modify components such as logic gates, transistors and capacitors.
Artists use evolution to create art out of primitive shapes: swirls, spheres, tori, or
out of mathematical functions such as cosine, arctangent and factoria. Likewise,
computer scientists using GP evolve programs from components contained within
the function and terminal sets. My own work used cuboid blocks to construct
designs, and currently uses fuzzy logic functions to construct fuzzy rules and
musical notes to construct compositions. Every explorative evolutionary system
relies on some kind of component-based representation. Figure 1 illugtrates this
idea, showing how components allow increased freedom for evolution.

Figure1 Optimisation of fixed parameterisation versus component-based expl oration.
Shape A uses minimal parameters and is knowledge-rich (the height of the shape and the
swept 2D outline is assumed by this representation). Shape B is constructed by wrapping an
envel ope around a collection of 3D dlipses. By varying the relative positions and sizes of
the dlipses, vastly more innovative and crestive forms can be generated.

Evolutionary algorithms, and in particular genetic algorithms and genetic
programming, naturally lend themselves to this kind of exploration. It is standard
practice to use evolution to manipul ate coded versions of solutions (genotypes) and
to map these onto actual solutions (phenotypes). This use of genotypes and
phenotypes means that the digtinction between, and use of, components of
solutions and complete solutionsis natural to thisfield.

4, A Framework for Explorative Evolution

From this novd intuitive understanding, a framework for explorative evolutionary
systems can be constructed, containing the foll owing five components:

1. Anevolutionary algorithm.

2. A genetic representation.



3. An embryogeny using components.
4. A phenotype representation.
5. Fitness function(s).

To summarise, an explorative evolutionary system requires some kind of
evolutionary agorithm to generate new solutions. The algorithm modifies
genotypes defined by the genetic representation, which must be designed to
minimise disruption caused by the genetic operators. An embryogeny (or mapping
process) must decode the genotype, and using some kind of components, must
construct the phenotype. The phenotype representation must be designed such that
it permits quick and efficient evaluation by the fitness function(s). It is likely that
the evolutionary algorithm, the genetic representation and to some extent the
embryogeny, will be generic and suitable for reuse for most problems without
modification. The phenotype representation and fitness functions must be specific
to the current application of the system. The following sections explore the
elements of the framework for explorative evolutionary systemsin more detail.

Evolutionary Algorithm: The evolutionary algorithm forms the core of any
evolutionary system. There are four main EAs in use today: the genetic algorithm,
genetic programming, evolutionary strategies and evolutionary programming. Only
the GA and GP are commonly used for explorative purposes. The reason for this
can be found in the way these algorithms work. The genetic algorithm maintains
genotypes and phenotypes, with a mapping between the two. As described earlier,
this distinction has helped to encourage some GA researchers to use component-
based genotype representations that map onto the phenotype representations, thus
allowing explorative evolution to begin. In the same way, genetic programming
also makes use of genotypes (this time with tree-structures) that are mapped onto
phenotypes such as programs, images or circuits. GP has the advantage that its
genetic representation requires the use of smaller components (in the function and
terminal sets), so al applications of GP demonstrate the explorative power of
evolution. This explains why the first notion of “invention maching” came from
John Koza, the inventor of GP - his algorithm ensures that explorative evolution
will aways take place. In contrast, algorithms such as evolutionary strategies and
evolutionary programming make no distinction between genotype and phenotype.
By directly modifying the solution and with no provison for mapping to new
representations, these approaches make the use of components to construct
solutions more difficult to implement - but not impossible.

Within any evolutionary algorithm there are other issues that must be tackled.
Handling multiple objectives, multimodality, noise, premature convergence, fuzzy
or changing fitness functions must al be considered. Solutions to al of these
problems, using ideas such as Pareto optimality, region identification, speciation,
variable or directed mutation rates and steady-state GAs are now emerging in
evolutionary computation [26], [4], [28]. These issues, although important, are not
the most significant consideration for explorative evolution. Indeed, even the
choice of evolutionary algorithm (or indeed any other search algorithm) is
secondary to the representations, for it is the representations that permit evolution
to explore.

Genotype Representation: The genotype representation defines the search space
of the agorithm. A poor representation may enumerate the space such that very
dissmilar solutions are close to each other, making search for better solutions



harder. For explorative evolutionary computation, where genes will represent
(directly or indirectly) a variable number of components, the search space is
typically of variable dimensionality, thus making its design even harder [7].

There are also other problems. Because of the use of components to represent
solutions, the likelihood of epistasis dramaticaly increases. Not all component-
based representations will have this effect (e.g. a voxe representation allows both
exploration and zero epigtasis). However, most components are inherently linked to
their companions for the solution to work as a whole. A circuit relies on the links
between its components, a melody relies on links between notes, a house relies on
links between walls, a program relies on links between commands. These linkages
all mean that corresponding genes become epistatically linked, resulting in
potentially serious problems for evolution. With polygeny so prevalent in these
problems, great care must be taken in the design of the genotype representation and
corresponding genetic operators to minimise the disruption of inheritance.

Practitioners of GP have long been aware of these problems, with many
solutions now in existence. Modifications can be made to the genetic
representation to increase functionality and decrease disruption, eg. ADFs, ADIs,
ADLs, etc. [21]. Genetic operators that enforce typing help ensure that genetic
trees are not shuffled too drastically during the production of offspring [29].

GAs do not require the use of tree-structured genotypes, so genetic
representation-based problems are often less prevalent. GAs can be used to evolve
variable-length genotypes and structured genotypes, typically with operators
designed to perform crossover only at points of similarity between two parent
genotypes, for example [30]. Advanced GAs designed to minimise damage caused
by disruption of epistatic links between genes have also been demonstrated [31]. In
addition, GAs do not suffer from the classic GP problem of bloat, where genotypes
tend to increase in size, with redundant genetic material becoming ever greater in
solutions. It is clear that the creation of suitable genetic representations and
corresponding operators is a considerable problem in its own right. Furthermore,
recent research seems to indicate that sgnificant benefits may be gained from
using less complex genetic representations and operators, instead making use of
embryogenies of greater complexity [32].

Embryogeny: An embryogeny is a special kind of mapping process from
genotype from phenotype. Within the process, the genotype is now regarded as a
set of ‘growing indructions — a recipe which defines how the phenotype will
develop. Polygeny is common, phenotypic traits being produced by multiple genes
acting in combination. My own research in this area has revealed some of the
potential of these advanced mapping processes. Advantages include reduction of
the search space, better enumeration of search space, the evolution of more
complex solutions, and adaptability [26].

Embryogenies are widely used for explorative evolutionary systems, for they
provide the mechanism for constructing whole solutions from components. Three
types of embryogeny are used today, the first and most common being external,
where a programmer writes the software that performs the mapping, and the
process cannot be evolved [26]. More recently, explicit embryogenies have become
popular, with every step of the growth process explicitly held as part of the
genotype, and evolved [26]. Examples include Cellular Encoding (used by Koza
and team for the evolution of analogue circuits [21], Lindenmayer Systems (used
by Coates for the evolution of architectural forms[9] and shape grammars (used by



Gero for the evolution of floor plans [8]. Despite the considerable success of these
embryogenies, they often require complex additions to genetic representations and
operatorsto alow evolution to work. The third type of growth process, the implicit
embryogeny, has shown the most exciting results and greatest potential in recent
work. Instead of evolving the mapping as a set of explicit steps in the genotype, an
implicit embryogeny uses a set of rules, typically encoded as binary strings in a
GA genotype. For each solution, a‘seed’ component is created, and then the rules
areiteratively applied. Over many iterations, with rules activating and suppressing
each other, the growth, position, and type of hew components are built up, finaly
resulting in the development of a complete solution. This emergent growth process
shows remarkable properties of scalability, with the genotype describing solutions
of increasing complexity without any increase in the number of rules needed - the
rule-directed growth process is smply allowed to run for more time. This is in
contrast to al other approaches, which require significantly larger genotypes to
define the increased growth of more complex solutions [32].

The process of mapping from genotypes to phenotypes is clearly of importance
to the investigation of explorative evolution. Issues of scalibility, evolvability, and
biases induced in search have yet to be considered by researchers in any great
depth. Increased understanding in this area would benefit both computer science
and devel opmental biology.

Phenotype Representations: Once constructed by the embryogeny, the resulting
solution is defined by the phenotype representation. Typically thisrepresentation is
application-specific - if we are evolving circuits, the representation might define
networks of connected components, if we are evolving buildings, the
representation might define exterior shapes and/or interior walls, floors and stairs.
An important criterion is evaluation - typically the phenotype representation will
be designed to allow direct evaluation by fitness functions, without intermediate
transformations or calculations. A poor choice will detrimentally affect processing
times and solution accuracies.

The distinction between genotype, embryogeny and phenotype representationsis
often blurred in this field. Some GP practitioners regard al three to be the same.
Others, such as Jakobi's work on evolving neural networks [33] or Tauras work on
evolutionary configuration design [34], use different and distinct representations
for each gstage. It is still unclear whether the component growing process of the
embryogeny should use the same representation as the phenotype - should the
phenotype be represented by blocks or should the blocks be merged into a sngle,
whole description of the solution? For example, should an evolved musica
composition be represented by a series of notes or by a single, complex waveform
in the phenotype? The answer is likely to depend on the fitness functions,

Fitness Functions. The fitness functions must provide an evaluation score for
every solution. For explorative evolutionary computation, this is often a little
harder. Typically the use of components rather than a parameterised solution
means that early results can be chaotic to say the least. A design of a car may
resemble a shoe; a melody may sound like a burglar alarm. Before evolution has
had time to improve these initially random solutions, they can be nothing at al like
the desired result. And yet the fitness functions must aways be able to provide a
fitness score that makes sense. The task is made even harder when unknowns or
approximations must be incorporated into the evaluation, or when constraints and



objectives are varied to aid exploration. Potential solutions include the use of
custom-designed modular functions [16] and fuzzy logic [4] to cope with such
problems.

Many explorative systems use human input to help guide evolution. Artists can
completely take over therole of a fitness function [12], [13], and more recent work
has investigated the use of these techniques for evolving photo-realistic images of
faces for the identification of criminals [35]. These applications raise humerous
human-computer-interfacing issues, i.e., will an explorative system detrimentally
affect the style of an artist or the memory of a crime victim? These software tools
have been shown to aid imagination and creativity, but how best to let the user
inform evolution of his/her preferences and how best for the computer to report the
structure and contents of the space being explored? Clearly, further research is
required to address these i ssues.

5. Example Creative Application

To demonstrate the potential of explorative evolution, this section of the paper
describes a smple application - the generation of shapes that, when constructed out
of paper, fall as dowly as possible to the ground. A smple explorative
evolutionary system was developed, following the framework provided above. A
‘smple GA’ was used as the evolutionary algorithm [36]. The genotype
representation comprised a flat chromosome of 16 binary coded genes. A very
basic mapping process or embryogeny was used to derive 8 (X, y) parameter values
from each chromosome, join each vector to its successor by an edge, join the last
vector to the fist with an edge, and fill the resulting shape. This process was
performed by executing PostScript instructions output by the system, printing the
shapes, and using a scalpd to cut out the shapes. The resulting paper phenotypes
(‘represented’ by reality) were then tested by releasing them from a height of
150mm three times in succession. Each phenotype was allocated their fitness score
by calculating: 1/(timel+time2+time3), ensuring that evolution would attempt to
generate phenotypes with increased ‘falling times'.

Figure 2 The paper fall application uses eight vertices asits components (I eft).
These are extracted from the genotype and transformed into real paper shapes by
the use of a ‘join the dots and fill the shape’ embryogeny (and someone to print
and cut out the shape).

This application illustrates the use of an extremely basic component-based
embryogeny representation. As figure 2 illustrates, the components are simply
eight vertices with (x, y) positions. Despite these components having no size and
no type, the unconstrained freedom of position of each vertex relative to all other
vertices means that this component-based representation allows the definition of a



vast number of different shapes. Clearly this is a knowledge-lean representation
(no information about which shapes are best is provided). It should aso be clear
that the representation allows evolution to explore the solution space in an
unconstrained manner, and that there will be many millions of good and bad
solutions for this problem.

ersaps
pposps s

Figure 3 Two paper shapes evolved to fall dowly through the air. Both are members of the
final generation, and both use asmaller ‘arm’ or flap to cause the shapeto rotate as it fals,
like a sycamore seed. (Not shown at scale used for testing.)

Predictably, the use of real-life testing is time-consuming and laborious
(especially if you make the mistake of performing the experiment yoursdlf instead
of enliging the services of a student). Because of this, population sizes of 10
individuals were used in an evolutionary run of 10 generations. Despite these
excessively low values, evolution was able to make significant improvements on
the time taken for the shapes to reach the ground. Times taken for initially random
shapes to fall 150mm varied from 0.7 seconds to 1.8 seconds. By the tenth
generation, all shapes took, on average, more than 2 seconds to fall the same
distance. Figure 3 shows two of the solutions in the final population. Convergence
has begun to occur, with most shapes using the same technique of having a smaller
flap which causes the shapes to rotate as they fall. The main benefit of this solution
appears to be the way rotation stabilises the motion of the shape, preventing it from
dipping sdeways in the air and plummeting to the ground at tremendous speed.
Even with the very limited resources evolution was given, a ‘cregtive’ solution to
the problem was found.

6. Conclusions

Crestivity is avery hard concept to define, but this paper does not suggest that the
credtivity of people depends on the exploration of component-based
representations. However, evolution is very different from the human brain. It is
apparent that all of the evolutionary systems that claim to produce ‘creativeé or
innovative results do rely on the use of component-based representations with
evolution. It is aso clear that such uncongrained and knowledge-lean
representations do provide far greater freedom for evolution to innovate, compared
to knowledge-rich representations based on a parameterisation of a solution.

With this insgght into enabling creativity by evolution, we can creaste a
framework for explorative evolutionary systems, comprisng: evolutionary
algorithm, genotype, embryogeny and phenotype representation and fitness
functions. Although looking familiar, the framework employs a component-based



embryogeny to map genotypes into phenotypes, which raises more unusual issues
for the genotype and phenotype representations and the fitness functions.

This framework was illugtrated by the paper fall application, which used binary
strings for the genotype representation, a component-based embryogeny using
eight vertices to form shapes, and real phenotypes constructed from paper. Even
using such smple techniques, evolution was able to generate some cregtive
solutions in the form of ‘sycamore seed’ shapes, demonstrating the power of
explorative evolution. Although it may not be the only reason for the success of
evolution for these problems, it seems that exploring components is one of the
secrets of creativity by evolution.

References

1. Bentley, P. J (Contributing Editor), 1999a. Evolutionary Design by Computers.
Morgan Kaufman Publishers Inc., San Francisco, CA.

2. Dawkins, R., 1996. Climbing Mount | mprobable Penguin Books, Ltd..

3. Bentley, P. J. and Corne, D. (Eds), 1999. Proceedings of the AISB'99 Symposium on
Creative Evolutionary Systems (CES). Published by AISB, Sussex, UK. ISBN 1
902956 03 6.

4. Parmee, |., 1999. Exploring the Design Potential of Evolutionary Search, Exploration
and Optimization. In Bentley, P. J. (Ed.) Evolutionary Design by Conputers. Morgan
Kaufman Publishers Inc., San Francisco, CA.

5. French, M., 1999. The Interplay of Evolution and Insight in Design. In Bentley, P. J.
(Ed.) Evolutionary Design by Computers. Morgan Kaufman Publishers Inc.

6. Frazer, J, 1995. An Evolutionary Architecture. Architectural Association, London.

7. Gero, J. S & Kazakov, V., 1996. An exploration-based evolutionary model of
generative design process. Microcomputers In Civil Engineering 11, 209-216.

8. Schnier, T. and Gero, J. S., 1996. Learning genetic representations as aternative to
hand-coded shape grammars, in J S. Gero and F. Sudweeks (eds), Artificia
Intelligence in Design'96, Kluwer, Dordrecht, pp.39-57

9. Coates, P., (1997) Using Genetic Programming and L-Systems to explore 3D design
worlds. CAADFutures’97, R. Junge (ed), Kluwer Academic Publishers, Munich.

10. Soddu, C., 1995 Recreating the city's identity with a morphogenetic urban design. 17th
International Conference on Making Cities Livable, Freiburb-im-Breisgau, Germany,
Sept. 5-9 1995.

11. Dawkins, R., 1986. The Blind Watchmaker. Longman Scientific & Technical Pub.

12. Todd and Latham, 1999. The Mutation and Growth of Art by Computers. In Bentley, P.
J. (Ed.) Evolutionary Design by Computers. Morgan Kaufman Publishers Inc.

13. Sims, K., 1991. Artificia Evolution for Computer Graphics. Computer Graphics, 25,
No.4, 319-328.

14. Rowbottom, A., 1999. Evolutionary Art and Form. In Bentley, P. J. (Ed.) Evolutionary
Design by Computers. Morgan Kaufman Publishers Inc., San Francisco, CA.

15. Bentley, P. & Wakefield, J, 1997. Conceptual Evolutionary Design by GAs.
Engineering Design and Automation Jnl 3:2, John Wiley & Sons, Inc, 119-131.

16. Bentley, P. J. & Wakefidd, J. P., 1997b. Generic Evolutionary Design. Chawdhry,
P.K., Roy, R, & Pant, RK. (eds) Soft Computing in Engineering Design and
Manufacturing. Springer Verlag London Limited, Part 6, 289-298.

17. Thompson, A., 1995. Evolving Fault Tolerant Systems. Genetic Algorithms in
Engineering Systems: Innovations and Applications, IEE Conf. Pub. 414, pp. 524-529.

18. Koza, J., 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press.

19. Thompson, A. & Layzell, P., 1999. Analysis of Unconventional Evolved Electronics.



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

35.

36.

Communications of the ACM, April 1999 - Volume 42, Number 4, pp71-79.

Miller, J., Kalganova, T., Lipnitskaya, N., Job, D., 1999. The genetic agorithm as a
discovery engine: strange circuits and new principles. To appear in Bentley and Corne
(eds), Creative Evolutionary Systems, Morgan Kaufman Pub.

Koza, J.R. Bennett 111, F. R., Andre, D. & Keane, M. A., 1999. Genetic Programming
I11: Darwinian Invention and Problem Solving. Morgan Kaufmann Pub.

Funes, P. and Pollack, J., 1999. The Evolution of Buildable Objects. In Bentley, P. J.
(Ed.) Evolutionary Design by Computers. Morgan Kaufman Publishers Inc.

Sims, K., 1999. Evolving Three-Dimensional Morphology and Behaviour. In Bentley,
P. J. (Ed.) Evolutionary Design by Computers. Morgan Kaufman Publishers Inc.
Husbands, P., Jermy, G., Mcllhagga, M., & Ives, R, 1996. Two Applications of
Genetic Algorithms to Component Design. In Selected Papers from AlSB Workshop on
Evolutionary Computing. Fogarty, T. (ed.), Springer-Verlag, Lecture Notes in
Computer Science, pp. 50-61.

Bentley, P. J, 1999b. Is Evolution Creative? In P. J Bentley and D. Corne (Eds)
Proceedings of the AISB'99 Symposium on Creative Evolutionary Systems (CES).
Published by The Society for the Study of Artificial Intelligence and Simulation of
Behaviour (AISB), pp. 28-34.

Bentley, P. J., 1999c. An Introduction to Evolutionary Design by Computers. Chapter 1
in Bentley, P. J (Ed.). Evolutionary Design by Computers. Morgan Kaufman
Publishers Inc., San Francisco, CA, 1-73.

Harvey, 1., 1997. Cognition is not Computation: Evolution is not Optimisation. In
Artificial Neural Networks - ICANN97, Gerstner, Germond, Hasler, and Nicoud (eds).
Vavak, F., & Fogarty, T., 1996. Comparison of Steady State and Generational GAs for
Use in Nonstationary Environments. Proceedings of the IEEE 3rd International
Conference on Evol utionary Computation |CEC'96, published by IEEE.

Page, J., Poli, R. and Langdon, W., 1999. Smooth Uniform Crossover with Smooth
Point Mutation in Genetic Programming: A Preliminary Study, In R. Poli, P. Nordin,
W. B. Langdon and T. Fogarty (Eds.), Proceedings of the Second European Workshop
on Genetic Programming - EuroGP'99, Goteborg, May 26-27, 1999, Springer-Verlag.
Bentley, P. J. & Wakefidd, J. P., 1996. Hierarchical Crossover in Genetic Algorithms.
In Proceedings of the 1st On-line Workshop on Soft Computing (WSC1), (pp. 37-42),
Nagoya University, Japan.

Goldberg, D., 1999. The Race, the Hurdle, and the Sweet Spot: Lessons from Genetic
Algorithms for the Automation of Design Innovation and Crestivity. In Bentley, P. J.
(Ed.) Evolutionary Design by Computers. Morgan Kaufman Publishers Inc.

Bentley, P. J and Kumar, S, 1999. Three Ways to Grow Designs: A Comparison of
Embryogenies for an Evolutionary Design Problem. In Genetic and Evolutionary
Computation Conference (GECCO '99), pp.35-43.

Jakobi, N., 1996. Harnessing Morphogenesis. In Proceedings of the international
Conference on information Processing in Cell and Tissue.

Taura, T. and Nagasaka,, 1999. Adaptive growth type representation for 3D
configuration design. In Bentley, P.J. (Guest Ed.) First Special Issue on Evolutionary
Design, Artificial Intelligence for Engineering Design, Analysis and Manufacturing
(AIEDAM) v13:3, Cambridge University Press, 171-184.

Hancock, P. and Frowd, C., 1999. Evolutionary Generation of faces. In Bentley, P. J. &
Corne, D. W. (Eds) Proceedings of the AISB'99 Symposium on Creative Evolutionary
Systems (CES). Published by AISB, Sussex, UK. ISBN 1 902956 03 6.

Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley.



