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Abstract.  The properties of engineering structures such as cars, cell phones or 
bridges rely on materials and on the properties of these materials. The study of 
these properties, which are determined by the internal architecture of the 
material or microstructure, has significant importance for material scientists. 
One of the things needed for this study is a tool that can create microstructural 
patterns. In this paper we explore the use of a genetic algorithm to evolve the 
rules of an effector automata to recreate these microstructural patterns. 
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1   Introduction 

Materials science is the study of materials and their properties.  Most materials are 
crystalline and so have a regular periodic crystal structure at the atomic scale.  But a 
brick or a spanner are not made of one single perfect crystal. They are made from 
billions of small crystals.  Each crystal is not the same shape or composition, and they 
often exist as a nested structure in which one crystal will contain many types of 
smaller crystal.  This complicated multiscale pattern is called the microstructure.   The 
microstructure has long been recognised as the origin for the wealth of different types 
of materials that we see around us. The term is not limited to describe the structure of 
crystalline materials, it is used to describe the internal patterns of all materials. 

What makes a wine glass brittle and an optical fibre strong is not explained in 
terms of the strength of atomic bonds, which are chemically identical.  The 
extraordinary difference in properties is entirely attributable to the different types of 
microstructure in the two products [1].  Changing the microstructure changes the 
properties.  This is the origin of ‘heat treatment’ in metallurgy.  A sword can be made 
brittle and weak, or strong and tough by simply putting it in a fire.  The heat treatment 
produces a different microstructure.  The materials for jet engines, silicon chips, 
batteries, and even concrete building foundations are engineered to have specific 
microstructures to give specific properties.  The study of these microstructures, these 
patterns, is therefore a major area of research.  Figure 3 (left) illustrates the 
microstructure of a jet engine alloy, showing small spherical alumina crystals 
embedded in a bigger nickel-aluminium crystal.  The size and dispersion of the 
alumina crystals is one of the major controlling factors of the high temperature 
strength of the material.   

There is a major effort to design new materials with special properties [2].  This 
involves investigating new types of microstructure and using computer simulation to 
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test the properties.  One of the first steps along this road is to develop a tool that can 
create microstructural pattern [3].   This paper deals with this issue and introduces a 
new method to create microstructural patterns using a genetic algorithm (GA) to 
evolve a type of cellular automaton (CA). 

2   Background 

2.1  Introduction to Microstructures 

All materials have internal architectures that determine their properties, known as 
microstructures. Details of specific microstructures are normally obtained using one 
of the different microscopy techniques available. Among the features that can be 
found in a microstructure are grains, grain boundaries and phases. 

Most materials are composed of various crystals or grains and are separated by 
grain boundaries. Inside these grains, there can be more crystals or particles of 
different types and orientations. Each different type of particle constitutes a phase in 
the grain [4]. 

2.2  Cellular Automata 

Cellular automata (CA) are mathematical tools that can be used to model physical 
systems. A CA consists of cells usually arranged in a square grid and communicating 
with each other [5]. There are two features that differentiate CAs: the initial 
configuration (IC) and the rule set. The IC determines the dimensions of the lattice 
and the state of each automaton at the initial stage. The rule set is the set of rules that 
will be applied to the lattice each iteration, starting from the IC. The initial state of the 
lattice will change following the dictate of these rules. 

CA are being used in a number of different fields and applications ranging from 
materials science [6] to the evolution of “artificial brains” [7]. In most of these 
applications, the rules of the CA are designed by humans but there is a growing 
interest in using evolutionary computing techniques to automate rule generation. 
Some examples of this trend are the use of GAs [8] and GP [9] to evolve CAs for the 
density classification problem or the use of a “Selfish Gene” algorithm to evolve a 
CA that can test digital circuits [10]. Closer to the task of evolving shapes, work 
performed by Kumar and Bentley [11] used GAs to evolve and compare different 
developmental processes, including CAs, by evolving specific bitmaps. Also relevant 
to this research is the evolution of CA and pheromonal agent systems to explore 
pattern formation described in [12]. 

2.3  Effector Automata 

Effector automata (EfA) are a type of CA introduced in [13] in which the cells of the 
lattice represent only locations in the space and automata are entities that can occupy 
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those cells. The rules of an EfA are different from those in a standard CA (see Fig. 1). 
In a standard CA the rules specify the state of the automaton in the next time step 
whereas in an EfA the rules specify the location of a moving automaton in the next 
time step. Regardless of the differences, the EfA retains most of the properties of CA 
like strictly local interactions among automata, and a high degree of parallelism. 

 
Fig. 1. The first 2D lattice represents the EfA at time step t, the second lattice represents how 
the darker cell (automaton) would move at time step t+1 if the rule “if (neighbours<=3) 
then move” was applied. The direction of movement is not specified in the rule; the EfA will 

choose randomly a direction in which the automaton will not collide with any of its neighbours. 

3   Using GAs to Grow Microstructures with Effector Automata 

3.1  Effector Automata Rules 

The rules of the EfA used in this work can fall in one of two types: 

If (number_of_neighbours ≥ threshold) then move, else stay. 
If (number_of_neighbours < threshold) then move, else stay. 

The neighbours of an automaton are the automata that occupy contiguous cells. In 
a 2D EfA, an automaton may have a maximum of eight neighbours so there are 
sixteen possible rules, eight of the first type and eight of the second. An EfA was 
chosen instead of the standard CA for several reasons. First, the number of automata 
to deal with is reduced from all the cells in the lattice to all the cells that actually 
contain automata. Second, the GA doesn’t have to spend time finding the right value 
for the number of active automata in the lattice. These two things make EfA more 
computationally efficient than standard CA. The effects of using different rules with 
two ICs can be seen in Fig. 2.  

 

 
Fig. 2. The two lattices in the first column represent the ICs of the CA. The rest of the lattices 
represent the IC to their left after being iterating it for a number of times with different rules. 
Some rules, e.g., rule 1 and rule 10, can produce large changes to the IC. 
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3.2  Genetic Algorithm 

In this work a genetic algorithm grows two-phase single-crystal microstructures. This 
kind of microstructure can be represented with lattices with cells in one of two 
different states, Fig. 3. 
 

 

Fig. 3. Part the microstructure of an ODS ferritic superalloy (left). The discretisation into a 
20x20 lattice that will be used as a target by the GA (right). 

The GA reconstructs microstructures in 2D but the method described in this paper 
works in exactly the same fashion regardless of the dimensionality of the 
microstructure being reconstructed. It uses the same information needed to reconstruct 
microstructures in 3D. The only difference between 2D and 3D is the size of the 
search space. To enable easier experimentation, this work focuses on 2D 
reconstruction. 

A fairly standard generational GA with elitism is used. Selection is performed 
through tournaments with two contestants per tournament; selected candidates are 
combined using a two point crossover operator and each chromosome has a 
probability of 0.1 of being mutated. There is one slot for elitism so the best candidate 
of each generation passes directly to the next generation without modifications. 

The GA evolves a population of EfA rule sets. Every gene in the genome 
represents one of the 16 possible rules and is coded as an integer in the range 0-15. 
The length of the genome is fixed by the user, the bigger this number, the more rules 
in the rule set.  

Each of these rule sets, together with an IC, is used to create the EfA. The IC is 
common to all EfA created during the run and is randomly generated. To construct an 
EfA using the rule set, every automaton (filled cell in the IC) is assigned one rule 
randomly chosen from the rule set. Once an automaton is assigned a rule, it follows 
that rule alone for the duration of the execution of the EfA. After iterating each EfA 
for a fixed number of times, the resulting lattice is input to the fitness function. 

3.3  Fitness function 

The fitness function examines the distribution of automata on the lattice and compares 
it to the distribution of the target provided to the GA. Fitter individuals have 
distributions of automata that match the target more closely. 

To obtain the distribution of automata along the lattice, a distance is obtained for 
every pair of automata in the lattice. Using this information a distribution of automata 
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and distances is built for every automaton. The following two-point correlation 
function was used: 

   f (d) =
1

N 2 nd

i=1

i=N

∑     (1) 

where d is the correlation distance, N is the total number of automata in the system 
and nd is the number of automata at distance d from automaton i. This distribution 
relates a given automaton with any other automaton in the lattice and the Euclidean 
distance that separates them. The distribution obtained as a result of averaging the 
distributions of all automata in the lattice is used to compare different lattices with the 
target lattice provided to the GA. 

 

4   Experiments 

The objective of these experiments is to see if it is possible to reconstruct shapes of 
different levels of complexity using EfA whose rules have been evolved by a GA. 

In addition, the impact of two system parameters on the GA was investigated. To 
measure this impact, two different experiments, one for each parameter, were devised. 
For each experiment, a number of different variations of the parameters were tried. 
Every variation of the parameters was tested with three different target lattices (see 
Fig. 4) and each of these tests was run ten times.  

 
Experiment 1: Size of rule set. Tests evolving rule sets of sizes: 1, 2, 3, 4, 5 and 10. 
Experiment 2: Maximum number of iterations. Tests iterating the EfA for 100, 1000 
and 100000 time steps. 
 

 

Fig. 4. The three input 2D lattices used as targets for the GA in the tests. Though the number of 
clusters increases in each target and so does the difficulty of finding a solution, the number of 
automata remains the same in all cases 

The GA population size for all the experiments was 20 individuals. The GA 
terminated when it found a perfect match according to the fitness function, otherwise 
it evolved up to 500 generations and returned the best candidate found. In experiment 
1 each EfA was iterated a maximum of 10000 times. In experiment 2 the size of the 
rule set was 5. 
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5   Results 

5.1   Results for Experiment 1. 

The first noticeable thing is that the differences in terms of fitness between the 
different values for this parameter are rather small (see Fig. 5). This result is probably 
due to an inadequate fitness function. As expected, for a simple target such as the 
first, the GA always finds the perfect candidate regardless of the size of the rule set. 
More surprising is the fact that bigger rule sets provide worse candidates for targets 2 
and 3. The problem with bigger rule sets is probably that they mean a bigger or more 
difficult search space for the GA.  

 

Fig. 5. Average fitness obtained by the GA with different values for the size of the rule set. 
When the target is simple, like in target 1, the GA always finds a perfect match regardless of 
the number of rules. 

The size of the rule set has also a noticeable impact on the rules that are used to 
reconstruct shapes (see Fig. 6). If the size of the rule set is small, the range of possible 
rules is only 2, rule 9 and rule 10. As the size of the rule set increases, so does the 
range of possible rules. Still, it is clear that rules in the range 8-11 have better chances 
of being included in a given rule set than rules outside this range. 
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Fig. 6. Rules used to reconstruct the inputs in the first experiment 

5.2   Results for Experiment 2. 

In the second experiment, the performance of the GA as the EfA iteration variable 
increases seems to improve in target 1 and 2 but not in 3 (see Fig. 7).  
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Figure 7. Fitness of the best candidates for each input in the second experiment 

Another interesting result from this experiment is that only rules in the range 8-11 
have a chance of appearing in the rule set of a good candidate for a solution in the 
later stages of the evolution of the GA. 

6   Analysis 

In terms of performance, the experiments suggest that there are no major differences 
between the different parameters used for both experiments. It is conceivable that this 
result may be affected by the fitness function, which may be allocating good fitness 
ratings for too many individuals. 

Nevertheless, the results show that the GA converges, on average, to an optimal 
solution in fewer generations when the EfA runs for more time steps. This advantage 
has to be offset with the fact that the GA normally evolves faster with EfA running 
for fewer iterations. When the GA evolves larger rule sets it can potentially construct 
shapes with richer complexity, but this advantage turns to be a disadvantage when the 
target to be reconstructed is simple. In these cases, the fact that the search-space 
increases as the size of the rule set gets bigger, is enough to give smaller rule sets an 
edge in terms of performance. 

Another observation from these tests is that of all the 16 potential rules, there is a 
small subset (rule numbers in the range 8-11) that are much more likely to be included 
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in the rule set of a fit candidate. Previous analysis has shown that these particular 
rules tend to cluster the IC they are provided with. Since the ICs are randomly 
generated and on average contain no clusters, is not surprising that rules that create 
clusters are popular. The reason why rules with numbers greater than 11 are not 
usually included in the rule sets of fit candidates is that automata using these rules 
need a large number of automata as their neighbours so they stop moving around. 
Also, previous analysis has shown that these rules need more iterations before 
reaching a stable situation. Therefore, it is likely that automata that follow rules with 
numbers larger than 11 would be more successful in an EfA with a high proportion of 
automata over empty cells, that were iterated a huge number of time steps. 

7   Conclusion 

This paper has demonstrated that it is possible to reconstruct shapes of moderate 
complexity using a GA that evolves rules of an effector automata. The system we 
described takes advantage of the features of emergence and self-organisation of CA. 
Though none of the automata have a plan of how the lattice should look at the end, 
they manage to move to appropriate new positions by interacting with each other and 
following their evolved rules. By doing this they ensure that the resulting pattern in 
the lattice looks similar to the target that the system wants to recreate, regardless of 
the position they occupied at the beginning. 

These results are interesting by themselves and could be very significant for 
material scientists. A system able to interpolate 3D microstructures from 2D cross-
sections is important, and could enable new materials to be engineered that will be 
used to build smaller mobile phones, faster engines or safer cars. The system shown 
in this paper can easily be extended to create 3D shapes starting from 2D images as 
the information it uses to reconstruct them is the same.  

References 

[1] Gordon G. E. Structures or Why Things Don’t Fall Down, Pelican Books, London. (1978) 
[2] Raabe D. Computational Materials Science: The simulation of materials, microstructures 

and properties, Wiley, Weinheim.. (1998) 
[3] Basanta D., Miodownik M. A., Holm E. A., and Bentley P. J.  Designing the Internal 

Architecture of Metals using a Genetic Algorithm. Computer-Based Design. Engineering 
Design Conference 2002. Professional Engineering Publishing Ltd, London, UK. pp. 349-
355. (2002) 

[4] Brandon, D., Kaplan, W. D. Microstructural characterization of materials. 
Wiley, Weinheim, (1999) 

[5] Ulam, S. On some mathematical properties connected with patterns of growth of figures. In 
Proceedings of Symposia on Applied Mathematics, volume 14, pages 215-224. American 
Mathematical Society. (1962.) 

[6] Raabe D. Cellular automata in materials science with particular reference to  
recrystallization simulation. Annual review of materials research. (2002) 



Evolving Cellular Automata to Grow Microstructures   

[7] De Garis, H. The Evolutionary Engineering of a Billion Neuron Artificial Brain by 2001 
Which Grows/Evolves at Electronic Speeds Inside a Cellular Automata Machine. Published 
in Sanchez, E., and Tomassini, M. Towards Evolvable Hardware; The Evolutionary 
Engineering Approach. Springer. (1996) 

[8] Mitchell M., Crutchfield J. P., Das R. Evolving Cellular Automata to perform computations. 
Published in Baeck T., Fogel D., and Michalewicz (Eds.), Handbook of Evolutionary 
Computation. The institute of physics. (1997) 

[9] Andre, D., Bennett, F., Koza, J. Discovery by genetic programming of a cellular automata 
rule that is better than any known rule for the majority classification problem. Published in 
Koza, J.R, Goldberg, D.E., Fogel, D.B., Riolo, R.L., Genetic Programming 1996: 
Proceedings of the First Annual Conference, MIT Press. (1996.) 

[10] Corno, F., Reorda, M. S., and Squillero, G. Exploiting the Selfish Gene Algorithm for 
Evolving Hardware Cellular Automata. Proceedings of the 2000 Congress on Evolutionary 
Computation CEC00. IEEE press. (2000). 

[11] Kumar, S., Bentley, P. The ABCs of evolutionary design. Investigating the evolvability of 
embryogenies for morphogenesis. Genetic and Evolutionary Computation Conference 
(GECCO '99) RN/99/2. (1999) 

[12] Bentley K. A. (2002). Exploring aesthetic pattern formation. Generative Art 2002 
conference proceedings. (2002) 

[13] Lohn, J. and Reggia., J. Discovery of Self-Replicating Structures using a Genetic 
Algorithm. In 1995 IEEE International Conference on Evolutionary Computing. (1995) 

 


