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Abstract

This work shows that multi-fibre reconstruction tech-
niques, such as Persistent Angular Structure (PAS) MRI or
QBall Imaging, provide much more information than just
discrete fibre orientations, which is all that previous trac-
tography algorithms exploit from them. We show that the
shapes of the peaks of the functions output by multiple-fibre
reconstruction algorithms reflect the underlying distribu-
tion of fibres. Furthermore, we show how to exploit this
extra information to improve Probabilistic Index of Connec-
tivity (PICo) tractography. The method uses the Bingham
distribution to model the uncertainty in fibre-orientation es-
timates obtained from peaks in the PAS or QBall Orienta-
tion Distribution Function (ODF). The Bingham model cap-
tures anisotropy in the uncertainty, allowing the method to
track through fanning and bending structures, which previ-
ous methods do not recover reliably. We devise a new cali-
bration procedure to construct a mapping from peak shape
to Bingham parameters. We test the accuracy of the cali-
bration using a bootstrap experiment. Finally, we show that
exploiting the peak shape in this way can provide improved
PICo tractography results.

1. Introduction

Diffusion MRI probes the microstructure of the brain by
observing the diffusion of water molecules. In particular,
it is used to examine the fibrous white-matter that connects
the different regions of the brain. The technique has several
applications; it can be used to detect white-matter diseases
[28], generate atlases of connectivity of the brain [32] and in
neurosurgical planning and evaluation [3, 20]. The standard
technique in diffusion MRI is Diffusion Tensor Imaging
(DTI), which fits the diffusion tensor to diffusion-weighted
measurements in each image voxel. However, DTI fails
when voxels contain complex structure, such as crossing
fibres, because it assumes a single fibre direction in each
voxel. Multi-tensor models [7, 11] overcome this limitation
to some extent, but require knowledge of the number of fibre

populations prior to fitting. More recently, various multiple-
fibre reconstruction algorithms have been developed, such
as Persistent Angular Structure (PAS) MRI [15], Spherical
Deconvolution [14] and QBall Imaging [35], which resolve
multiple fibre orientations in a single voxel without prior
knowledge of the number of fibre directions.

Tractography uses fibre-orientation estimates to find the
paths of white-matter tracts through the brain. The sim-
plest method is streamline tractography [29, 30]. Starting
from a seed point, a path (or streamline) is propagated from
voxel to voxel using the local fibre orientation estimates to
determine the direction of each step. A major limitation
of streamline tractography is that noise in the diffusion-
weighted measurements causes uncertainty in the estimates
of the fibre orientations. The streamlines only reflect the
maximum-likelihood path of the white-matter, which does
not capture all of the connectivity. Probabilistic tractogra-
phy [10, 17, 18, 31] uses estimates of uncertainty of each
fibre-orientation estimate and Monte Carlo sampling of the
streamline paths to create a map of an index of connectivity
of every voxel in the brain to a specified seed voxel.

Most tractography algorithms still use the basic DTI
single-fibre reconstruction and it is not clear how to gen-
eralize them to exploit the extra information that multiple
fibre reconstructions provide. Parker and Alexander [27]
introduced a generalization of PICo that uses the peaks of
PASMRI functions as fibre-orientation estimates and the
sharpness of the peaks as indicators of uncertainty. That
method neglects much of the information stored in the PAS
functions. Here, we hypothesize that the functions output
by multiple-fibre reconstructions contain much more infor-
mation about the true fibre orientations. We show that the
shape of the peaks reflects the local spread of fibres and,
in particular, the peak anisotropy (i.e. how elliptical the
peak cross section is) reflects local fibre bending or fanning.
We go on to show how to exploit this extra information
to improve the ability of PICo to recover fanning or bend-
ing structures by constructing a new general framework for
PICo with multiple fibre reconstructions, extending Parker
and Alexander’s method [27]. We use the Bingham distri-



bution, which can have elliptical isocontours, to model the
uncertainty of each fibre-orientation estimate. We estimate
the shape of the Bingham distribution from the peak shape.
Fanning and bending structures are widespread in the hu-
man brain and are notoriously hard to reconstruct with trac-
tography. We show results on one important structure, the
descending motor pathways, which is important in a wide
range of neuroscience studies.

2. Background

This section describes the main approaches to estimating
uncertainty for probabilistic tractography. We then intro-
duce a family of algorithms, which we refer to as multiple-
fibre reconstruction algorithms. We finish by describing ex-
tensions to the calibration procedure used in the PICo algo-
rithm.

2.1. Probabilistic Tractography

Probabilistic tractography uses models of uncertainty in
fibre-orientation estimates, along with standard streamline
tractography, to calculate the probability of voxels being
connected to a seed voxel. The procedure runs multiple
streamline tracking processes from each seed point. For
each streamline, each fibre-orientation estimate is randomly
sampled from a probability density function (PDF) that
models the uncertainty of the fibre orientations. The index
of connectivity of any other voxel to the seed voxel is the
fraction of streamlines that pass through that voxel.

Several alternative methods for modelling the uncer-
tainty of fibre-orientation estimates have been developed.
Parker et al [10, 26, 27], Cook et al [23] and Lazar et al
[18] use a calibration procedure. They construct a mapping
from some rotationally invariant feature of the diffusion to
the variance of the fibre-orientation estimate using simula-
tions. In the simplest algorithm [10], for example, Parker et
al create a population of deflection angles between a known
fibre direction and an estimate reconstructed by fitting the
diffusion tensor (DT) to noisy synthetic data. They model
the deflection angles with a Gaussian distribution and re-
peat for several levels of anisotropy in the synthetic data.
Finally, they fit a linear model of the relationship between
the FA and the variance of the Gaussian model, which they
use to predict the variance in each voxel during tractogra-
phy.

Behrens et al [31], Friman et al [9] and Hosey et al
[34] use a Bayesian approach combined with a multi-
compartment model of diffusion and sample from the mar-
ginal posterior distribution of the fibre orientation directly.
Jones et al [16, 17], Lazar [19] and Haroon et al [13] use sta-
tistical bootstrap techniques to obtain samples of the fibre-
orientation estimate distribution.

The Bayesian and bootstrap methods require explicit and

parsimonious models relating the fibre orientation to the
measurements and are limited by the oversimplicity of these
models. They do not extend naturally to exploit the general
class of multiple fibre reconstructions we aim to use here.
Here we use the calibration approach, which does extend
naturally in that way.

2.2. Multiple Fibre Reconstruction Algorithms

Multiple-fibre reconstruction algorithms can model more
than one fibre direction in each voxel. The algorithms all
output a function of the sphere in each voxel that reflects
the local distribution of fibre orientations. The PASMRI
reconstruction algorithm calculates the Persistant Angular
Structure of the particle displacements density p. The PAS
is the function on a spherical shell embedded in three-
dimensional space whose Fourier transform matches the ob-
served diffusion MRI measurements [15]. Thus, the PAS p̃
is defined by

A(q) = r2

∫
p̃(x̂) cos(rq · x̂)dx̂, (1)

where r is the radius of the sphere on which p̃ is embed-
ded in 3-space, A(q) is the normalised diffusion-weighted
measurement for wavevector q.

QBall is an approximation of Diffusion Spectrum Imag-
ing (DSI) [36]. DSI calculates the orientation distribution
function (ODF) φ of p by projecting a discrete representa-
tion of p onto the unit sphere:

φ(x̂) =
∫ ∞

0

p(αx̂)dα. (2)

QBall approximates the ODF by using the Funk-Radon of
the diffusion signal on a sphere in Fourier space. The Funk
Radon Transform of a spherical function at a point x̂ on
the sphere is the integral of the function over the equator
that lies in the plane perpendicular to x̂, through the origin.
This approximation is the convolution of the true ODF with
a Bessel function [35].

Both PASMRI and QBall compute a feature of the parti-
cle displacement density, which is assumed to reflect the
underlying distribution of fibre-orientations, although the
relationship is not clear. Spherical Deconvolution (SD) [14]
aims to reconstruct the fibre orientation distribution (FOD)
directly. This method makes the assumption that the mea-
surement, A(q), is equivalent to the response R(q; x̂) from
a single fibre with orientation x̂ convolved with the distribu-
tion of fibre-orientations present in the voxel. The methods
use a model of R to deconvolve the signal to obtain the fibre
orientation distribution. However, the relationship between
the output and the true fibre orientation distribution is still
complex and unclear, because the model of R is necessarily
over simple.



All of these methods provide a function of the sphere
with peaks in dominant fibre directions. The functions re-
flect the shape of the underlying fibre-orientation distribu-
tion to some extent and some authors, eg [21], use them
directly as a PDF on the next step direction in tractography.
However, none of the functions provide the true distribu-
tion of the fibre orientations and the mapping between these
quantities may be very complex. In particular, the shapes of
the spherical functions that the methods return are very dif-
ferent and depend on parameter settings in the reconstruc-
tion algorithms; see figure 1 and [1] for examples. One fea-
ture of the functions that does appear reliable, however, is
the peak directions, which usually provide good estimates
of the dominant fibre orientations.

Figure 1. Two voxels of synthetic data reconstructed using a)
PASMRI b) QBall. Each algorithm computes a different mathe-
matical feature of the true PDF. As a result, the reconstructions
differ in shape depending upon the method chosen to reconstruct.

2.3. Extensions to PICo

Cook et al [23] use calibrated PICo with more stan-
dard spherical distributions such as the Watson and Bing-
ham distributions [22] instead of Parker et al’s Gaussian
to model fibre-orientation uncertainty. They evaluate their
method using synthetic data and within PICo tractogra-
phy tasks on brain data. They show that both the Watson
and Bingham distributions are better for modelling the un-
certainty of fibre-orientation estimates than Parker et al’s
Gaussian model. In particular, the Bingham model captures
anisotropy in the uncertainty.

Both Parker and Alexander [26] and Cook et al [24,
6] generalize calibrated PICo to use multi-tensor models,
which can improve tracking through fibre-crossings. How-
ever, this framework suffers from the limitations of the
multi-tensor models such as fitting problems and the need to
prespecify the number of fibres per voxel. Hosey et al [34]
and Behrens et al [33] extend the Bayesian approach from
[31] to model up to two fibre-orientation estimates within
each voxel.

Parker and Alexander [27] extend calibrated PICo to ex-
ploit multiple fibre reconstruction algorithms. They use
peak directions as fibre-orientation estimates, of which
there may be several in each voxel. In place of the FA
of the diffusion tensor, they use the sharpness of the fibre
orientation distribution peak to predict the uncertainty of
the estimate. Broad peaks have a high uncertainty, sharp

peaks have a low uncertainty. Specifically, they compute
the Hessian, or second derivative matrix, of the PAS func-
tion at each peak and use its trace as a measure of mean cur-
vature. The uncertainty mapping is indexed using the log of
the trace of the Hessian of each peak to find the variance in
a Gaussian model of uncertainty.

A weakness of the approach in [27] is that the Gaussian
model does not account for anisotropy in the uncertainty
of the fibre-orientation estimate. Anisotropy in the un-
certainty occurs in regions of fanning and bending where
the fibres spread out more in one direction than another.
Isotropic uncertainty models fail to capture this structure,
which compromises reconstruction of these kinds of archi-
tectures. Here, we show that the shape of the peaks of func-
tions from multi-fibre reconstructions reflects anisotropy in
the spreading of fibre directions and we can use the peak
anisotropy to predict uncertainty anisotropy.

3. Methods

This section describes how to calculate the shape of the
cross-section of peaks from multiple fibre reconstructions
and introduces the peak anisotropy, which is a measure of
the eccentricity of the cross section of a peak. We then
give details of the bi-polar Bingham distribution, which can
model anisotropy in a spherical distribution. Finally, we de-
scribe a calibration procedure that exploits peak shape to
improve estimates of uncertainty required for PICo tractog-
raphy.

3.1. Peak Anisotropy

Peak anisotropy describes how elliptical the cross-
sections of the peaks of multiple-fibre reconstructions are.
We hypothesize here that the peak anisotropy reflects the
underlying distribution of fibre-orientations. In particular,
where there is a fanning or bending structure present in a
voxel, the peaks of the function will have a highly elliptical
cross-section that corresponds to the distribution of fibre-
orientations present. We use the Hessian to describe each
peak. Figure 2a shows an illustration of the peak shape for
each peak of a multiple-fibre reconstruction. We compute a
separate peak Hessian for each peak in the reconstruction.

To calculate the peak anisotropy, we generalize the stan-
dard definition of the fractional anisotropy [2] to

FA =

√
N

∑
(λi − λ̄)2

(N − 1)
∑

λ2
i

, (3)

where λi, i = 1, ..., N are eigenvalues of some N -
dimensional quadratic form and λ̄ is their mean. For N = 3,
we get the familiar FA for three-dimensional DTs proposed
in [2]. Here we use N = 2 to compute the anisotropy of the
Hessian at PAS or ODF peaks. We refer to this quantity as
the peak anisotropy.



We compute the FA of the two minor eigenvalues of
the diffusion tensor, which provides an analogue to peak
anisotropy for DT-MRI. The FA of the minor eigenvalues
quantifies diffusion anisotropy orthogonal to the principal
direction of the diffusion tensor.

3.2. Spherical Distributions

The Watson distribution [22] is

p(x) = W (x; z, κ) = M

(
1
2
,
3
2
, κ

)−1

exp[κ(z·x)2], (4)

where M denotes the confluent hypergeometric function of
the first kind [22], the vector z is the mean orientation and
κ controls the concentration of the distribution. The distri-
bution is isotropic about z. When κ > 0, the distribution is
“bipolar” and is most concentrated at ±z. At κ = 0 the es-
timates are uniformly distributed over the sphere and when
κ < 0 the distribution forms a girdle. The Bingham dis-
tribution is a generalisation of the Watson distribution with
elliptical contours,

p(x) =
1

M2(1
2 , 3

2 ,A)
exp[κ1(z1 · x)2 + κ2(z2 · x)2], (5)

where

A = (z3, z2, z1)


 κ3 0 0

0 κ2 0
0 0 κ1


 (z3, z2, z1)T (6)

and M2 is the confluent hypergeometric function of the first
kind for matrix argument [22]. There are two parameters,
κ1 ≤ κ2 ≤ 0, that define the concentration of the distribu-
tion, since A and A + dI give equivalent distributions for
any real d, where I is the identity. Therefore it is customary
to set κ3 = 0. When κ2

κ1
≈ 1 the distribution is circular.

As κ2
κ1

→ 0 the distribution becomes increasingly ellipti-
cal. The distribution is a girdle when κ2 = 0, and when
κ1 = κ2 = 0 the distribution is uniform. The mean of the
distribution is z1 × z2 and z1 and z2 are the principal axes
of the elliptical contours of the PDF.

3.3. Calibration

For calibration, we construct a mapping from two
Hessian eigenvalues λ1 and λ2 to the Bingham parameters
κ1 and κ2 using simulations on two-tensor mixture mod-
els with known peak directions. Specifically, for a large
number of noisy trials we synthesize data from test func-
tions and reconstruct fibre-orientation estimates and associ-
ated Hessian matrices using the multiple-fibre reconstruc-
tion of choice. In each trial, we rotate the true direction to a
common reference frame and apply the same rotation to the

reconstructed direction. We collect the rotated reconstruc-
tion directions into bins with similar Hessian eigenvalues.
The bin size is set to 0.45 for the PASMRI calibration and
0.2 for the QBall calibration, and the bins are indexed using
the log of the Hessian eigenvalues. We fit the parameters of
the Bingham distribution in each bin containing 50 or more
samples. Finally, we fit linear surfaces to the log of each
Bingham parameter as a function of the log of the Hessian
eigenvalues. We create two calibration mappings; one for
the voxels containing a single fibre population and one for
voxels containing two fibre populations. In voxels where
more than two fibre populations are reconstructed we use
the two-fibre calibration mapping to estimate uncertainty.

The synthetic data come from test functions representa-
tive of one or two fibre orientations per voxel. The datasets
containing two fibre orientations per voxel were generated
using variations of the test function

p(x) = aG(x;D1, t) + (1 − a)G(x,RT
θ D2Rθ, t), (7)

where a is a mixing parameter, G(x;D, t) is a zero mean
3D Gaussian with covariance 2tD, D1 = diag(λ1, λ2, λ2),
D2 = diag(λ2, λ1, λ2) and Rθ is a rotation by θ about the
z-axis. We use combinations of λ2 ∈ [1, 5]×10−10 m2 s−1,
a ∈ [0.1, 0.5] and θ ∈ [0, 45o]. We set Tr(D) =
λ1 + 2λ2 = 2.1 × 10−9 m2 s−1, which is approximately
the value expected in brain data. For datasets contain-
ing a single fibre orientation per voxel, the test function is
p(x) = G(x;D1, t), where λ2 ∈ [1, 5]×10−10 m2 s−1. The
parameters are varied between their minimum and maxi-
mum values to create all possible variations of the test func-
tion. A random rotation is then applied to the test function
to remove any directional bias due to the chosen acquisition
scheme. The data is synthesized by sampling the Fourier
transform of p at each wavenumber in a spherical acquisi-
tion scheme according to the standard Fourier relationship
between the particle displacement density p and the diffu-
sion weighted measurement [5]. We add Rician noise to
make S, the SNR at b = 0 equal to 20, which is approx-
imately the same value as the average SNR of the white
matter in the b = 0 image of each brain volume.

The synthetic data used for calibrating the original dif-
fusion tensor implementation of PICo is constructed using
the method described above to generate data from a single
Gaussian model; see Cook et al [23] for details.

Figure 2b shows an example calibration mapping. Each
of the surfaces maps the Hessian eigenvalues of a peak to
one of the Bingham parameters. In this example, the green
surface maps λ1 and λ2 to κ1 and the blue surface maps λ1

and λ2 to κ2. Only the highlighted half of the surfaces is
ever used, since λ1 ≥ λ2. Thus, to estimate the Bingham
parameters of the uncertainty model for a peak with Hessian
eigenvalues λ1 and λ2 from the calibration mapping, we set

κ1 = − exp(c(1)
1 + c

(1)
2 log(λ1) + c

(1)
3 log(λ2)) (8)



Figure 2. a) Features of the multiple-fibre reconstructions. For
each peak there is a fibre-orientation estimate (black line) and a
peak Hessian, which describes the shape of the peak cross-section
(red circle). b) Example of calibration mapping surfaces. The cal-
ibration outputs two linear mappings from the Hessian eigenval-
ues, log(λ1) and log(λ2), and the Bingham parameters log(−κ1)
(green surface) and log(−κ2) (blue surface).

κ2 = − exp(c(2)
1 + c

(2)
2 log(λ1) + c

(2)
3 log(λ2)), (9)

where c
(1)
i and c

(2)
i , i = 1, 2, 3, are the coefficients for the

two linear surfaces. During tractography we draw vectors
from the Bingham distribution with shape parameters κ1

and κ2, using the fibre-orientation estimate as the mean of
the distribution.

3.4. Human Brain Data

High angular resolution diffusion-weighted imaging
(HARDI) data were acquired on a 3 T Philips Achieva scan-
ner using an 8-element SENSE head coil. A pulsed gradi-
ent spin echo (PGSE) echo planar imaging (EPI) sequence
was implemented with TE=54ms, TR=6000ms, 112 × 112
matrix reconstructed to 128 × 128 using zero filling, re-
constructed resolution 1.836, mm × 1.836, mm, slice thick-
ness 2.1, mm, 34 contiguous slices, 61 gradients at b =
1200 s mm−2, 1 at b = 0, SENSE acceleration factor = 2.5.
The total imaging time for each HARDI acquisition was
approximately 7 minutes. This acquisition was repeated
8 times provide a conventional bootstrapping dataset. All
diffusion-sensitised images were registered to the corre-
sponding b = 0 image within each slice location to remove
eddy current-induced distortions and for all scanning repe-
titions to the first scan, using the 6-degrees-of-freedom 2D
registration schedule file available in FSL’s FLIRT. The av-
erage SNR in the white-matter regions of the b = 0 image is
20. For tractography, we acquired a separate dataset with 60
contiguous axial slices, which provides complete brain cov-
erage. The imaging parameters for the tractography data are
as above except that TR=11884ms.

4. Experiments and Results

In this section, we show that the peaks of multiple-fibre
reconstructions do provide useful information that can be
used to improve tractography results. We validate our cali-

bration procedure by comparing the Bingham parameter es-
timates from our calibration procedure to estimates gener-
ated using the bootstrap method for several regions of in-
terest in human brain data. PICo tractography results are
shown for human brain data seeded at the base of the corti-
cospinal/corticopontine tracts. For the QBall reconstruction
we use spherical harmonic basis functions [4], since the
spherical integral can be computed analytically and there-
fore does not incur the numerical inaccuracies of the radial
basis function implementation described in [35]. We use the
PASMRI standard settings listed in [15]. The peaks of the
PAS or ODF in each voxel is found using the peak-finding
algorithm described in [15]. The Hessians of the PAS and
ODF functions at each peak are calculated numerically.

4.1. Correlation between Hessian anisotropy and
fanning in the human brain

We start by testing the hypothesis that the peaks of the
PAS or ODF contain more useful information than simply
the peak sharpness and direction by generating images of
the peak anisotropy of the dominant peaks of the PAS and
the ODF in each voxel, as well as the anisotropy of the
DT perpendicular to its principal axis. The peak anisop-
tropy images (figure 3) generated are colour-coded to show
the direction of the anisotropy using the principal eigen-
vector of the peak Hessian of the spherical functions and
the second eigenvector of the DT respectively. Both point
in the direction of the largest anisotropy of the peak cross-
section, which we hypothesize is the direction of the fibre-
spread/uncertainty.

Figure 3 shows the magnitude and direction of the peak
anisotropy of the dominant peak from the DT (b), ODF (c)
and PAS (d) in each voxel. In figures 3b and 3c, light pix-
els indicate that the cross-section of the principal peak of
the reconstruction is elliptical; dark regions indicate that
the peak-cross section is circular. Where there are multi-
ple peaks, figures 3b and 3c show only the anisotopy of the
largest peak. The peak anisotropy at the centre of the cor-
pus callosum (highlighted with the upper box) is low, since
the fibres are approximately parallel in this region and any
spread is isotropic. Note that this is in stark contrast to the
diffusion tensor anisotropy (Fractional Anisotropy) in the
corpus callosum, which is usually very high. However, the
PAS peaks in the descending motor pathways (highlighted
with the left box) have high anisotropy with the largest axis
in the posterior-anterior direction (green), which, according
to anatomical knowledge [12], is the direction of the fanning
of this structure. The ODF peak anisotropy image high-
lights the fanning structure less clearly than PAS. This is a
result of the fourth-order spherical-harmonic representation
of the ODF, which cannot model anisotropy in the peak suf-
ficiently well. However, both the PASMRI and QBall peak
anisotropy maps broadly agree. In the case of the DT, the



FA of the two-dimensional DT orthogonal to the dominant
fibre direction generally agrees with the other two images.

Figure 3. images of a) the standard colour-coded principal direc-
tion map from the DT weighted by FA of the full three dimen-
sional DT. Red indicates left-right; green indicates front to back;
blue top to bottom; intensity is FA. b) Colour-coded map of the
second eigenvector weighted by the FA of the two-dimensional
DT orthogonal to the dominant fibre direction. c) Colour-coded
peak major axis orientation weighted by peak anisotropy for the
dominant ODF peak. d) Colour-coded peak major axis orientation
weighted by peak anisotropy for the dominant PAS peak. In cases
where the PAS or ODF has several peaks, the peak anisotropy of
the peak with the greater magnitude is shown. Note that the peak
major axis describes the orientation of the elliptical peak cross-
section rather than the fibre orientation.

4.2. Calibration validation

We validate the estimates of the Bingham distribution
parameters provided by the calibration mapping by com-
parison with bootstrap samples from the 8 repeats of the
human brain data. We identify 4 regions of interest (ROIs),
one containing voxels with highly coherent fibre bundles,
one with fibre-crossings, one in a fanning region and one
in an isotropic region. Each ROI contains 25 voxels. The
ROIs are shown in figure 4. Each ROI was extracted from
all 8 datasets and we create 100 bootstrap sets of measure-
ments for each voxel by sampling with replacement from
the 8 options for each measurement [8]. We reconstruct us-
ing PASMRI and QBall and estimate the fibre-orientation
estimates and associated Hessians for each bootstrap. To
estimate the true uncertainty anisotropy, we fit a Bingham
distribution to the set of all peak directions from all 100
bootstraps and compute the 2D FA of the Bingham parame-
ters cb = FA(diag(κ1, κ2)). Then, for each bootstrap, we
use the calibration to estimate the Bingham parameters. We

draw 100 samples from all of the Bingham PDFs in each
bootstrap, fit a single Bingham PDF to the whole colleec-
tion of these samples and compute c̄c, the average 2D FA.
In cases where there are several peaks, it is likely that sam-
ples will be drawn from both Bingham distributions during
tractography. We fit a single Bingham to both populations
when computing cb to capture this effect. For effective cali-
bration, we should find that cb � c̄c. Figures 5a and 5b plot
cb against c̄c for each voxel in each ROI for PASMRI and
QBall, respectively.

Figure 4. The regions of interest used for validating the perfor-
mance of the fitted mapping (the PAS is shown in each voxel of
the ROIs). The ROIs were chosen to include a) crossing fibre, b)
grey matter, c) fanning and d) single fibre regions of the brain.

For QBall, the FA of the Bingham parameters from the
calibration (figure 5b) are generally very low (0.1 − 0.2)
in comparison to those from the bootstrapped estimate, al-
though the calibration FA improves for grey matter and
fibre-crossing regions. The fourth-order spherical-harmonic
basis function representation of the ODF cannot adequately
capture the anisotropy in the peaks of the QBall ODF. The
PASMRI calibration gives better results (figure 5a), with
cb and c̄c generally agreeing. Some disagreement occurs
for the high FA samples, where bootstrapping gives much
higher anisotropy. Occasionally, when the uncertainty is
anisotropic, PASMRI produces small peaks in the perpen-
dicular direction rather than a single elliptical peak. The
small spurious peak causes unexpectedly low c̄c in the main
peak. Future work may correct for this by including the
peak height in the calibration mapping.

4.3. Tractography

We run PICo tractography on the human brain data us-
ing the new multiple-fibre PICo algorithm in conjunction
with PASMRI and QBall and compare the results to those
of the algorithm described in [26]. The tractography process
was started from a manually defined region of interest at the
base of the corticospinal/corticopontine tracts (see Figure 6,
inset). The dominant pathway from the seed region runs



Figure 5. Validation results for calibration mapping estimates of
the Bingham parameters. a) and c) are plots of the mean FA, c̄c,
of the Bingham parameters estimated by our mapping against the
FA, cb of the Bingham parameters estimated using bootstrapped
data for both PAS and QBall respectively.

Figure 6. PICo tractography connectivity maps using a DT re-
construction (top row), QBall reconstruction (middle row) and
PASMRI reconstruction (bottom row) made semi-transparent and
overlaid onto FA images. The difference map shows where the
probability of connection is higher when using the Bingham dis-
tribution (blue) or the Watson distribution (red). The seed ROIs
are shown in the axial view in the top-left corner (inset).

inferior-superior into the corona radiata, where the decend-
ing motor pathway fibres cross lateral fibres projecting from
the corpus callosum. Figure 6 shows the results of tractogra-
phy using the multi-fibre algorithm with both PASMRI and
QBall as well as results from the DT algorithm introduced
by [23] using both the Watson and Bingham distributions to
model uncertainty. As expected, the original DT-PICo algo-
rithm fails at fibre-crossings, which results in large holes in

the descending motor pathway reconstructions. In the DT
case, the connection probabilities in the descending motor
pathways vary widely, as opposed to the connection prob-
abilities from PAS-PICo and QBall-PICo, which are more
consistent over the tract. For QBall, the PICo results have
fewer holes than the DT-PICo results, since the QBall ODFs
are able to model multiple peaks. However, the reconstruc-
tion of the descending motor pathways generally fails to
reach the cortical layer. The results of the PAS-PICo trac-
tography experiment are more favorable. Not only does
the algorithm correctly map the fanning structure of the de-
scending motor pathways, the reconstructed tracts extend to
the cortical layer. The PAS-PICo results show fewer holes
in the descending motor pathways than those from QBall
PICo. These results reflect the greater ability of PASMRI
to resolve fibre-crossings with a small number of measure-
ments over QBall [1]. The difference map from the PAS-
PICo experiment shows that using the information about the
shape of the peak results in a more even probability of con-
nection over the descending motor pathways. Although the
overall magnitude of the connection probabilities appears
lower, this is merely because the total connectivity is the
same but it is now more evenly spread across the structure.

5. Discussion and Conclusions

We have introduced a generalization of the PICo algo-
rithm that allows us to use more of the information con-
tained in the fibre-orientation distributions to improve trac-
tography through complex white-matter structures. We
have demonstrated that the algorithm described here is com-
pletely general and works for both PASMRI and QBall. It
extends easily to similar algorithms such as Spherical De-
convolution. The bootstrap validation shows that the FA of
the Bingham parameters from the PASMRI calibration and
the bootstrap estimates approximately correlate. For QBall-
PICo, the choice of PDF used to model uncertainty makes
little difference to the resulting PICo connectivity map. This
results from using a fourth-order spherical-harmonic basis
function representation of the ODF. Using a spherical radial
basis function representation of the ODF or higher-order SH
may allow peak anisotropy to be captured better. PAS-PICo
gives the most compelling results. The difference maps in
figure 6 demonstrate clear changes by modelling anisotropy.
The PAS-PICo difference map clearly shows that using both
the shape and sharpness of the PAS peaks results in a higher
connection probability in regions of fibre crossings. Uti-
lizing other information in the peaks of multi-fibre recon-
structions, such as the magnitude of the peaks of functions,
in PICo may improve results further. The bootstrap vali-
dation highlights one weakness of the PASMRI reconstruc-
tion algorithm, which is that it sometimes produces a spuri-
ous perpendicular peak in fanning structures. Future work
will investigate and compare the ability of other multiple



fibre reconstructions to capture the shape of fanning and
bending structures. We also aim to compare the uncertainty
estimates using our calibration approach to those from the
Bayesian and bootstrap approaches. These implementations
of PICo are freely available in Camino [25], an open-source
diffusion MRI toolkit.
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