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Genetic Improvement of Programs 

• Why 

• Background 

– What is Genetic Programming 

– GP to improve human written programs  

• Examples 

– Demonstration systems, automatic bug fixing 

– Evolving code for a new environment 

• Implications 
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When to Automatically  

Improve Software 
• When to use GP to create source code 

– Small. E.g. glue between systems “mashup” 

– Hard problems. Many skills needed. 

– Multiple conflicting ill specified non-functional 

requirements 

• GP as tool. GP tries many possible 

options. Leave software designer to 

choose between best. 
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Genetic Programming 

 • A population of randomly created programs 
– whose fitness is determined by running them 

– Better programs are selected to be parents 

– New generation of programs are created by 
randomly combining above average parents or by 
mutation. 

– Repeat generations until solution found. 
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GP  Generational  Cycle 
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Creating new programs - 

Crossover 

Movie 

http://www.genetic-programming.com/crossover.gif


Some applications of  

Genetic Programming 

• Most GP generates solutions, e.g.: 

– data modelling,  

– chemical industry: soft sensors,  

– design (circuits, lenses, NASA satellite aerial),  

– image processing,  

– predicting steel hardness,  

– cinema “boids”, Cliff hanger, Batman returns  

Predict breast cancer survival 



GP to Improve  

Human written Programs 
• Gluing together existing programs to 

create new functionality 

– combining web services, mashup 

• Tailoring for specific use 

– domain specific hash functions 

– heap management, garbage collection 

– evolving communications protocols 
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GP to Improve  

human written programs 
• Finch: evolve Java bytecode 

– no compilation errors, 6 benchmarks 

• Improving GPU shaders 

• Functionality v speed or battery life 

Factorial source code,  

87% reduction in instructions, [white,2011] 

int Factorial(int a) 

{ 

  if  (a <= 0) 

      return  1; 

  else 

      return  (a * Factorial(a-1)); 

} 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html


Improving GPU code 

Sitthi-amorn, SIGGRAPH Asia 2011 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html


GP Automatic Bug Fixing 

• Run code: example to reproduce bug, a 

few tests to show fixed code still works. 

• Search for replacement C statement which 

fixes bug. 

• Real bugs in real C programs. 

– 1st prize Human-Competitive GECCO 2009  
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GP Automatic Coding 

• Target small unit. 

• Use existing system as environment 

holding evolving code. 

• Use existing test suite to exercise existing 

system but record data crossing interface. 

• Use inputs & answer (Oracle) to train GP. 

• How to guide GP initially? 

• Clean up/validate new code 
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GP Automatic Coding 

• Actual data into and out of module 

effectively act as the specification. 

• Evolved code tested to ensure it responds 

like original code to inputs. 

• Recorded data flows becomes test Oracle. 



Proof of Concept: gzip 

• Example: compute intensive part of gzip 

• Automatically recode as parallel function 

written in CUDA 

• Use nVidia’s examples as starting point.  

• BNF grammar keeps GP code legal, 

compliable, executable and terminates. 

• Use training data gathered from original 

gzip to test evolved code. 

• Why gzip? Well known, open source        

(C code), test suite. Langdon+Harman WCCI 2010 

http://dx.doi.org/doi:10.1109/CEC.2010.5585922


CUDA  Template 

• nVidia supply lots of working examples. 

• Choose simplest, that does a data scan. 

(We know gzip scans data). 

• Naive template too simple to give speed 

up, but shows plausibility of approach. 

• NB template knows nothing of gzip 

functionality. GP search is guided by the 

test suite (fitness function). 
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scan_naive_kernel.cu 
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//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add 

strstart1 strstart2, const. 

 move offset and n, rename n as num_elements 

WBL 14 r1.11 Remove crosstalk between threads threadIdx.x, temp -> g_idata[strstart1/strstart2] 

__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1, const int strstart2) 

{ 

    //extern  __shared__  uch temp[]; 

    int thid = 0; //threadIdx.x; 

    int pout = 0; 

    int pin = 1; 

    int offset = 0; 

    int num_elements = 258; 

    <3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0; 

    for (offset = 1; offset < num_elements; offset *= 2) 

    { 

        pout = 1 - pout; 

        pin  = 1 - pout; 

        //__syncthreads(); 

        //temp[pout*num_elements+thid] = temp[pin*num_elements+thid]; 

        <3var> =  g_idata[strstart+pin*num_elements+thid]; 

        if (thid >= offset) 

        <3var> += g_idata[strstart+pin*num_elements+thid - offset]; 

    } 

    //__syncthreads(); 

    g_odata[threadIdx.x] = <3var> 

} 

 



BNF grammar 

scan_naive_kernel.cu converted into 

grammar (169 rules) which generalises code. 

Fragment of 

4 page grammar 

<line10-18> ::= "" | <line10-18a> 

<line10-18a> ::= <line10e> <line11> <forbody> <line18> 

<line11>  ::= "{\n" "if(!ok()) break;\n" 

<line18>  ::= "}\n" 

<line10e>  ::= <line10> | <line10e1> 

<line10e1>  ::= "for (offset =" <line10.1> ";" <line10e.2> ";offset" <line10.4> ")\n" 

<line10.1>  ::= <line10.1.1> | <intexpr> 

<line10.1.1> ::= "1" | <intconst> 

 

<line10e.2> ::= <line10e.2.1> | <forcompexpr> 

<line10e.2.1> ::= "offset" <line10.2> <line10.3>  

<line10.2>  ::= "<" | <compare> 

<line10.3>  ::= <line10.3.1> | <intexpr> 

<line10.3.1> ::= "num_elements" | <intconst> 

 

<line10.4>  ::= "*= 2" | <intmod> 

 

<intmod>  ::= "++" | <intmod2> 

<intmod2>  ::= "*=" <intconst> 



gzip 

• gzip scans input file looking for strings that 

occur more than once. Repeated 

sequences of bytes are replaced by short 

codes. 

• n2 reduced by hashing etc. but gzip still 

does 42 million searches (sequentially). 

• Demo: convert CPU hungry code to 

parallel GPU graphics card code. 
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gzip longest_match() 



Fitness 

• Instrument gzip. 

• Run gzip on test suite. Log all inputs to 

longest_match(). 1,599,028 records. 

• Select 29,315 for training GP. 

• Each generation uses 100 of these. 
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Fitness 2 

• The tests are run on the original gzip code 

and its answers saved. 

• Each evolved CUDA function (1000) is run 

and answers compared with gzip’s answer. 

Up to 1588000 threads. 

• performance = Σ|error| + penalty 

• Many functions always return 0, these get 

high penalty. 
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Performance of Evolved Code 
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Fall in number of poor programs 

24 
71% useless constants in generation 0 

7% constants 



Evolution of program complexity 
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Evolution of gzip GPU code 

Strongly typed grammar 

based GP behaving like 

conventional tree GP 

Movie 

http://www.cs.ucl.ac.uk/staff/W.Langdon/gypse/


Evolved gzip matches CUDA code 
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Parse tree of solution 

evolved in gen 55.  

Ovals are binary decision 

rules. Red 2nd alternative 

used. 



Evolved gzip matches CUDA code 
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__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2) 

{ 

int thid = 0; 

int pout = 0; 

int pin = 0 ; 

int offset = 0; 

int num_elements = 258; 

 for (offset = 1 ; G_idata( strstart1+ pin ) == G_idata( strstart2+ pin ) ;offset ++ ) 

{ 

if(!ok()) break; 

thid = G_idata( strstart2+ thid ) ; 

  pin = offset ; 

} 

return pin ; 

} 

Blue  - fixed by template. 

Black - default 

Red  - evolved 

Grey – evolved but no impact. 



Conclusions 

• Genetic programming can automatically  
re-engineer source code. 

– Improve hash algorithm 

– Random numbers which take less power, etc. 

• Fix bugs (106 lines of code, 16 programs) 

• speed up 50000 lines of code 

• create new code in a new environment 
(graphics card) for existing program (gzip). 

Langdon+Harman WCCI 2010 

W. B. Langdon, UCL 29 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html


W. B. Langdon, UCL 30 30 

END 

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/ 

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/


The Genetic Programming Bibliography 

 
The largest, most complete, collection of GP papers. 

http://www.cs.bham.ac.uk/~wbl/biblio/ 

 With 8001 references, and 6,250 online publications, the GP Bibliography is a 

vital resource to the computer science, artificial intelligence, machine learning, 

and evolutionary computing communities. 

 
RSS Support available through the 

Collection of CS Bibliographies. 

 

A web form for adding your entries. 

Co-authorship community. Downloads  

 

A personalised list of every author’s 

GP publications. 

 

Search the GP Bibliography at 

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html 

 

http://www.cs.bham.ac.uk/~wbl/biblio/
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

