
Genetic Improvement of Programs
MENDEL 2012 Soft-Computing Conference

W. B. Langdon

CREST

Department of Computer Science

29.6.2012

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

Genetic Programming to Improve Software

W. B. Langdon
Centre for Research on Evolution, Search and Testing

Computer Science, UCL, London

GISMO: Genetic Improvement of Software for Multiple Objectives

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

Genetic Improvement of Programs

• Why

• Background

– What is Genetic Programming

– GP to improve human written programs

• Examples

– Demonstration systems, automatic bug fixing

– Evolving code for a new environment

• Implications

W. B. Langdon, UCL 3

When to Automatically

Improve Software
• When to use GP to create source code

– Small. E.g. glue between systems “mashup”

– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional

requirements

• GP as tool. GP tries many possible

options. Leave software designer to

choose between best.

W. B. Langdon, UCL 4

Genetic Programming

 • A population of randomly created programs
– whose fitness is determined by running them

– Better programs are selected to be parents

– New generation of programs are created by
randomly combining above average parents or by
mutation.

– Repeat generations until solution found.

Tree (A-10)*B

Free

PDF

http://www.gp-field-guide.org.uk/

GP Generational Cycle

6

7

Creating new programs -

Crossover

Movie

http://www.genetic-programming.com/crossover.gif

Some applications of

Genetic Programming

• Most GP generates solutions, e.g.:

– data modelling,

– chemical industry: soft sensors,

– design (circuits, lenses, NASA satellite aerial),

– image processing,

– predicting steel hardness,

– cinema “boids”, Cliff hanger, Batman returns

Predict breast cancer survival

GP to Improve

Human written Programs
• Gluing together existing programs to

create new functionality

– combining web services, mashup

• Tailoring for specific use

– domain specific hash functions

– heap management, garbage collection

– evolving communications protocols

W. B. Langdon, UCL 9

GP to Improve

human written programs
• Finch: evolve Java bytecode

– no compilation errors, 6 benchmarks

• Improving GPU shaders

• Functionality v speed or battery life

Factorial source code,

87% reduction in instructions, [white,2011]

int Factorial(int a)

{

 if (a <= 0)

 return 1;

 else

 return (a * Factorial(a-1));

}

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html

Improving GPU code

Sitthi-amorn, SIGGRAPH Asia 2011

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html

GP Automatic Bug Fixing

• Run code: example to reproduce bug, a

few tests to show fixed code still works.

• Search for replacement C statement which

fixes bug.

• Real bugs in real C programs.

– 1st prize Human-Competitive GECCO 2009

W. B. Langdon, UCL 12

GP Automatic Coding

• Target small unit.

• Use existing system as environment

holding evolving code.

• Use existing test suite to exercise existing

system but record data crossing interface.

• Use inputs & answer (Oracle) to train GP.

• How to guide GP initially?

• Clean up/validate new code

13 W. B. Langdon, UCL

GP Automatic Coding

• Actual data into and out of module

effectively act as the specification.

• Evolved code tested to ensure it responds

like original code to inputs.

• Recorded data flows becomes test Oracle.

Proof of Concept: gzip

• Example: compute intensive part of gzip

• Automatically recode as parallel function

written in CUDA

• Use nVidia’s examples as starting point.

• BNF grammar keeps GP code legal,

compliable, executable and terminates.

• Use training data gathered from original

gzip to test evolved code.

• Why gzip? Well known, open source

(C code), test suite. Langdon+Harman WCCI 2010

http://dx.doi.org/doi:10.1109/CEC.2010.5585922

CUDA Template

• nVidia supply lots of working examples.

• Choose simplest, that does a data scan.

(We know gzip scans data).

• Naive template too simple to give speed

up, but shows plausibility of approach.

• NB template knows nothing of gzip

functionality. GP search is guided by the

test suite (fitness function).

16 W. B. Langdon, UCL

scan_naive_kernel.cu

17

//WBL 30 Dec 2009 $Revision: 1.11 $ Remove comments, blank lines. int g_odata, uch g_idata. Add

strstart1 strstart2, const.

 move offset and n, rename n as num_elements

WBL 14 r1.11 Remove crosstalk between threads threadIdx.x, temp -> g_idata[strstart1/strstart2]

__device__ void scan_naive(int *g_odata, const uch *g_idata, const int strstart1, const int strstart2)

{

 //extern __shared__ uch temp[];

 int thid = 0; //threadIdx.x;

 int pout = 0;

 int pin = 1;

 int offset = 0;

 int num_elements = 258;

 <3var> /*temp[pout*num_elements+thid]*/ = (thid > 0) ? g_idata[thid-1] : 0;

 for (offset = 1; offset < num_elements; offset *= 2)

 {

 pout = 1 - pout;

 pin = 1 - pout;

 //__syncthreads();

 //temp[pout*num_elements+thid] = temp[pin*num_elements+thid];

 <3var> = g_idata[strstart+pin*num_elements+thid];

 if (thid >= offset)

 <3var> += g_idata[strstart+pin*num_elements+thid - offset];

 }

 //__syncthreads();

 g_odata[threadIdx.x] = <3var>

}

BNF grammar

scan_naive_kernel.cu converted into

grammar (169 rules) which generalises code.

Fragment of

4 page grammar

<line10-18> ::= "" | <line10-18a>

<line10-18a> ::= <line10e> <line11> <forbody> <line18>

<line11> ::= "{\n" "if(!ok()) break;\n"

<line18> ::= "}\n"

<line10e> ::= <line10> | <line10e1>

<line10e1> ::= "for (offset =" <line10.1> ";" <line10e.2> ";offset" <line10.4> ")\n"

<line10.1> ::= <line10.1.1> | <intexpr>

<line10.1.1> ::= "1" | <intconst>

<line10e.2> ::= <line10e.2.1> | <forcompexpr>

<line10e.2.1> ::= "offset" <line10.2> <line10.3>

<line10.2> ::= "<" | <compare>

<line10.3> ::= <line10.3.1> | <intexpr>

<line10.3.1> ::= "num_elements" | <intconst>

<line10.4> ::= "*= 2" | <intmod>

<intmod> ::= "++" | <intmod2>

<intmod2> ::= "*=" <intconst>

gzip

• gzip scans input file looking for strings that

occur more than once. Repeated

sequences of bytes are replaced by short

codes.

• n2 reduced by hashing etc. but gzip still

does 42 million searches (sequentially).

• Demo: convert CPU hungry code to

parallel GPU graphics card code.

19 W. B. Langdon, UCL

gzip longest_match()

Fitness

• Instrument gzip.

• Run gzip on test suite. Log all inputs to

longest_match(). 1,599,028 records.

• Select 29,315 for training GP.

• Each generation uses 100 of these.

21 W. B. Langdon, UCL

Fitness 2

• The tests are run on the original gzip code

and its answers saved.

• Each evolved CUDA function (1000) is run

and answers compared with gzip’s answer.

Up to 1588000 threads.

• performance = Σ|error| + penalty

• Many functions always return 0, these get

high penalty.

22 W. B. Langdon, UCL

Performance of Evolved Code

23 W. B. Langdon, UCL

Fall in number of poor programs

24
71% useless constants in generation 0

7% constants

Evolution of program complexity

25 W. B. Langdon, UCL

Evolution of gzip GPU code

Strongly typed grammar

based GP behaving like

conventional tree GP

Movie

http://www.cs.ucl.ac.uk/staff/W.Langdon/gypse/

Evolved gzip matches CUDA code

27

Parse tree of solution

evolved in gen 55.

Ovals are binary decision

rules. Red 2nd alternative

used.

Evolved gzip matches CUDA code

28

__device__ int kernel978(const uch *g_idata, const int strstart1, const int strstart2)

{

int thid = 0;

int pout = 0;

int pin = 0 ;

int offset = 0;

int num_elements = 258;

 for (offset = 1 ; G_idata(strstart1+ pin) == G_idata(strstart2+ pin) ;offset ++)

{

if(!ok()) break;

thid = G_idata(strstart2+ thid) ;

 pin = offset ;

}

return pin ;

}

Blue - fixed by template.

Black - default

Red - evolved

Grey – evolved but no impact.

Conclusions

• Genetic programming can automatically
re-engineer source code.

– Improve hash algorithm

– Random numbers which take less power, etc.

• Fix bugs (106 lines of code, 16 programs)

• speed up 50000 lines of code

• create new code in a new environment
(graphics card) for existing program (gzip).

Langdon+Harman WCCI 2010

W. B. Langdon, UCL 29

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html

W. B. Langdon, UCL 30 30

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

The Genetic Programming Bibliography

The largest, most complete, collection of GP papers.

http://www.cs.bham.ac.uk/~wbl/biblio/

 With 8001 references, and 6,250 online publications, the GP Bibliography is a

vital resource to the computer science, artificial intelligence, machine learning,

and evolutionary computing communities.

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

http://www.cs.bham.ac.uk/~wbl/biblio/
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

