
Genetic Improvement
Dagstuhl Seminar 15442

Approaches and Applications of Inductive Programming
25-30 October 2015

W. B. Langdon
Department of Computer Science

1.11.2015

Genetic Improvement special issue of

Genetic Programming and Evolvable Machines,

deadline 19 December 2015

ttp://www.dagstuhl.de/15442
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://static.springer.com/sgw/documents/1520626/application/pdf/GENP+CFP+-+EADM+Guest+Editor+Justyna+Petke.pdf
http://static.springer.com/sgw/documents/1520626/application/pdf/GENP+CFP+-+EADM+Guest+Editor+Justyna+Petke.pdf
http://geneticimprovement2015.com/

Genetic Improvement

• Genetic Programming to improve human

written programs

• Insights

• Examples

– Automatic bug repair

• 100s of real bugs, millions of lines of C/C++

– Evolving 50000 lines of C++

• Quality, speed, battery life tradeoffs

• GPU code, up to 10000 faster

2 W. B. Langdon, UCL

Genetic Improvement: Insights

• Work on industrial strength languages

• Focus search

• Evolve patches, change to C program source

• Evolve source code v. machine code

o Ensure many patches/mutants compile

o Software resilient to mutation

• Choose receptive domain

• Separate fitness from validation

o Evolution exploits fitness

o Present results on a slide, e.g. source code

Ensure many patches/mutants compile

• Create many patches/mutants

• Two common approaches

– BNF grammar

– abstract syntax tree

Both ensure syntax {}; is correct. Main reason for

not compiling is variable out of scope.

• Often faster to compile population of

mutants than one at a time

4 W. B. Langdon, UCL

Evolution exploits fitness
Computer does what you told it (not what you wanted)

• Do not assume no bugs because it looks ok

• Ensure guidance is in right direction

• Avoid over fitting

– e.g. randomisation, such as DSS

• A 1 in 1000 chance will come up, do not let

it trash your system or abort your GP.

– A mutant which crashes should get low fitness

not hang your evolutionary system

– CPU and/or time limits (also 1994)

– Sand boxing (perhaps virtual machines)
5

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ga94aGathercole.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/icec94_maxwell.html

Present results on a slide

7 mutations make Bowtie2 more than 70 times faster

Typically offsLenSampled=179,215,892 _nPat=84

 <for2_bt2_io_622><for2_bt2_io_278>

Mutation: replace 2nd part of for

loop on line 622 with 2nd part of

for loop on line 278

<bt2_io_278> ::= "for(uint32_t i = 0; i < this->_nPat; i++) {\n"

<bt2_io_622> ::= "for(uint32_t i = 0; i < offsLenSampled; i++) {\n"

Line 278 for(uint32_t i = 0; i < this->_nPat; i++) {

Line 622 for(uint32_t i = 0; i < offsLenSampled; i++) {

Line 622 for(uint32_t i = 0; i < this->_nPat; i++) {

Original code

Code after mutation

Before mutation for loop lines 622-626 iterated 179,215,892 times, after only 84.

Obviously faster.

Exactly same result since lines 622-626 do nothing useful.

GP Evolving Patches

W. B. Langdon, UCL 7

The 1000 Genomes Project

Software is not fragile

Software resilient to mutation

Trading performance against speed

Insights for Genetic Improvement
• Work on industrial strength languages, C/C++ Java

• Focus search, eg mutate only code which is used

• Evolve patches, small changes not whole code

• Evolve source code v. machine code

• Ensure many mutants compile

• Choose receptive domain, eg Bioinformatics

• Separate fitness from validation, validate after search

• Evolution exploits fitness, may have to update objective

• Present results on a slide

• Software is not fragile

–break it, bend it, Evolve it

Be ambitious: do something impossible Free code

http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/#code

W. B. Langdon, UCL 10 10

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Improvement

W. B. Langdon

CREST

Department of Computer Science

Copies in Dagstuhl library

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

