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ABSTRACT

Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching beyond the reach of current
compiler technologies. Rather than having to focus on the
details required to manage complex, inter-related and con-
flicting, non-functional trade offs, the designer is thus freed
to explore, to understand, to control and to decide rather
than to construct.
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1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation.
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
selves making arbitrary choices when such objective are in
conflict with one another.

Furthermore, speed and size are but two of many objec-
tives that the next generation of software systems will have
to consider. There are many others such as bandwidth,
throughput, response time, memory consumption and re-
source access. It is unrealistic to expect an engineer to de-
cide, up front, on the precise weighting that they attribute
to each such non-functional property, nor for the engineer
even to know what might be achievable in some unfamiliar
environment in which the system may be deployed.

Emergent computing application paradigms require sys-
tems that are not only reliable, compact and fast, but which
also optimise many different competing and conflicting ob-
jectives such as response time, throughput and consumption
of resources (such as power, bandwidth and memory). As
a result, operational objectives (the so-called non-functional
properties of the system) are becoming increasingly impor-
tant and uppermost in the minds of software engineers.

Human software developers cannot be expected to opti-
mally balance these multiple competing constraints and may
miss potentially valuable solutions should they attempt to
do so. Why should they have to? How can a programmer
assess (at code writing time) the behaviour of their code
with regard to non-functional properties on a platform that
may not yet have been built?

To address this conundrum we propose a development en-
vironment that distinguishes between functional and non-
functional properties. In this environment, the functional
properties remain the preserve of the human designer, while
the optimisation of non-functional properties is left to the
machine. That is, the choice of the non-functional proper-
ties to be considered will remain a decision for the human
software designer.



However, all decisions concerning the implementation de-
tails that will maximise or minimise non-functional proper-
ties will be delegated to the machine. Different versions of
the program can be constructed for different environments
(even those yet to be built), while maintaining the functional
properties originally set out by the software designer.

Non-functional properties will often be in conflict with one
another. For example, faster response times may increase
power, memory or bandwidth consumption. Therefore, we
do not propose that there will be a single solution program
offered. Rather, we propose that the development environ-
ment will produce a Pareto surface of candidate programs,
each of which shares the functional properties specified by
the human, while presenting different non-dominated solu-
tions with respect to non-functional properties.

A solution is non-dominated if no other solution is supe-
rior according to all non-functional properties. Each non-
dominated solution thus denotes a candidate trade off be-
tween the non-functional properties. The surface of solu-
tions might contain thousands, perhaps millions of such can-
didate programs, all of which perform the same function, but
each of which does so with different non-functional trade offs.
The programmer’s task is to define the functional properties
and to explore the space of non-functional solution alterna-
tives provided by the automated development environment.

In this paper we explain how a combination of advances
in software test data generation, genetic programming and
multi objective optimisation can be combined to realise this
vision. We present an architecture and principal features of
this proposed development environment, which we call GIS-
MOE: Genetic Improvement of Software for Multiple Objec-
tive Exploration.

The GISMOE approach draws its description of functional
characteristics either from a pre-existing program or from
a declarative specification of functional requirements. We
focus on pre-existing programs as the source of functional
descriptions in this paper (with a brief discussion of the al-
ternative in Section 6.2). GISMOE uses automated testing
to assess the degree to which the functional properties are
preserved and to measure the achievement of non-functional
requirements. Measurements of both functional and non-
functional requirements are used to provide the fitness func-
tions that guide a multi objective optimisation and visual-
isation process. We envisage that the optimisation will be
achieved by a Genetic Programming system, though there
may be other possibilities.

We present both a ‘conformant’ and ‘heretical’ version
of our GISMOE development environment. The heretical
version is merely an extension of the conformant version,
but it crosses a rubicon that may be unacceptable to some
software engineers, and will certainly be inappropriate for
some application areas (such as safety critical systems).

The conformant version is faithful to the long-cherished
belief that software engineers should strive for correct sys-
tems. The heretical view is that even correctness, as mea-
sured approximately (through testing), could become just
another measurable objective to be traded off against non-
functional properties.

In order to re-cast functional properties such as optimi-
sation objectives, within the same framework as the non-
functional properties, we shall need testing at a sufficiently
fine level of granularity and with a sufficiently rich mapping
from test cases to meaning.

Figure 1: The GISMOE Pareto Program Surface

We review (in overview) recent results, which we believe
provide the initial empirical evidence on which we rest our
belief that the GISMOE vision is achievable. Though we
believe this evidence to be promising, we claim only that it
demonstrates feasibility at the level of a ‘proof of concept’.
We recognise that the GISMOE research agenda currently
remains more of a ‘grand challenge’ than a reality. We hope
that this paper will provide a sufficiently compelling argu-
ment for the GISMOE agenda that others will feel motivated
to take up this challenge.

2. THE PARETO PROGRAM SURFACE

Suppose we plot a large set of programs on a surface.
Each program on this surface is plotted in three dimensions
(z,y,2), where x is the execution time of the program, y is
the power consumed by the program and z is the memory
consumed by the program (see Figure 1 for an illustration).

For each of these three dimensions, there are many ques-
tions about how we shall define the measurements: do we
want the average, the worst case, the most common case?
All of these (and more) are possibilities. For different GIS-
MOE applications, each will be useful. Let us suppose that
we have agreed a definition of each of these non-functional
properties.

To make the discussion concrete, let us suppose (for il-
lustration purposes) that we are concerned with an embed-
ded controller and that we wish to reduce worst case power
consumption, peak memory use and execution time (even
should this lead to increases in average and best case per-
formance for these properties).

Suppose we have an existing implementation of the con-
troller, designed by human programmers and for which there
is a well-established test suite collected from human-designed
test cases combined with test cases extracted from the logs
of in-situ execution in the field. Suppose the software de-
signer is presented with a Pareto surface like that depicted
in Figure 1. Each point on this surface represents an imple-
mentation of the controller that passes all of the test cases.

However, each point also denotes a trade off between the
three non-functional objectives of power, speed and mem-
ory. That is, no point on the surface is superior to any
other point according to all three non-functional criteria, so
each represents a valid choice; sacrificing one objective for
the other, the designer could choose an implementation that
best suits the problem in hand.



For instance, if one version of the controller has to be used
in a low power environment then power can be favoured,
whereas, for some other instantiation of the controller, worst
case response time may be paramount (even at the expense
of increased memory use and power consumption).

Like all Pareto fronts, the Pareto program surface may
also reveal so-called knee points; the presence of regions of
the solution space in which a rapid change in the trade offs
between objectives is observed. Whether or not the software
engineer ultimately selects for deployment any solution in
such a region of the Pareto program surface, he or she will
be able to analyse the surface gaining insight into the un-
derlying programming problem and the trade offs inherent
in any solution. The GISMOE challenge is thus:

to create an automated program development en-
vironment in which the Pareto program surface is
automatically constructed to support dialog with
and decision making by the software designer con-
cerning the trade offs present in the solution space
of programs for a specific programming problem.

Where a solution program on the surface is deemed to be
acceptable to the designer, it can simply be selected as the
solution. Where the designer is unwilling to vest this degree
of trust in an automated program-space exploration tool,
the GISMOE Pareto program surface will still offer value:
the designer can ‘zoom in’ on regions of the surface that
offer interesting and perhaps insightful trade offs between
the objectives (as illustrated in Figure 1).

The software designer can request that the system produce
more solutions in this region to flesh out the shape of the
surface in this neighbourhood. The designer can also ask the
system to report a code template for solutions in a region
of interest, where the template captures the syntax that all
programs in the region share. Through this mechanism the
designer may recognise a pattern in the coding solutions
that had not previously been considered and which offers a
novel and ‘clever’ way to balance competing and conflicting
non-functional requirements.

The end result of interaction with the GISMOE devel-
opment environment may therefore not be a program con-
structed by the tool at all. Rather, it may be that the human
engineer merely gains a better understanding of the under-
lying programming problem and the possible solutions that
the search space offers.

The engineer can also be brought into the optimisation
process itself as an interactive contributor to the fitness as-
sessment for candidate solutions. This is the open challenge
of ‘Human in the loop’ set out in Section 6.4.

In this example scenario, we considered only three objec-
tives for a hypothesised embedded controller with a human
generated test suite. However, the example was merely in-
tended as an illustration: the GISMOE vision is far more
general than this. We seek to use automated test data gen-
eration to provide test cases (using the original program as
an oracle). This imbues GISMOE with the luxury of a fully
automated testing process. We also constrain neither the
number nor type of non-functional properties that can be
considered, though there will be additional visualisation is-
sues when we seek to optimise for more than three such
objectives (See Section 6.3). We also do not constrain our-
selves to situations in which there is a pre-existing version of
the program (See Section 6.2), though we confine ourselves
to this scenario for the majority of the remaining discussion.

3. THE GISMOE MOTIVATIONS

In this section we set out the motivation for the GIS-
MOE research agenda. We describe how each of the compo-
nents of the overall approach fit together to form a coherent
vision of a new way of developing software. We propose
a ‘next generation’ software development environment that
offers intelligent decision support to the software engineer.
With this proposed development environment the software
engineer makes the transition from programmer to software
designer.

Non-Functional Measureability: The code to meet un-
known functional properties cannot be automatically gener-
ated. This requires human effort and creativity to describe
the requirements and to turn the users’ functional require-
ments into an executable form (which GISMOE uses as an
oracle). By contrast, the non-functional requirements are
easier to describe and handle.

For example, a user may spend many person months in
requirements specification for functional requirements, but
the non-functional requirements might merely state that the
resulting program should be fast and compact'. How fast?
How compact? The answer is ‘as fast and compact as pos-
sible’, but what is possible? This is where GISMOE can
provide answers, by exploring the space of non-functional
trade offs between speed and compactness; the Pareto pro-
gram surface.

The two non-functional properties of speed and compact-
ness can be measured and can therefore be ‘optimised into’
the programs produced to explore the range of implementa-
tions that meet the functional requirements, while offering
different balances of trade off between speed and compact-
ness. Similarly, any set of non-functional properties (band-
width, throughput, response time, memory consumption, re-
source access, etc.) can be measured and used as an optimi-
sation objective.

The human will always be required to elicit and under-
stand the functional requirements and to decide upon their
translation into test cases that capture and delimit what is
expected of the functional behaviour of the system. Never-
theless, most systems will have many other aspects of their
behaviour that are non-functional and equally important.
For such non-functional requirements, the goal is not the
achievement of a specific, detailed set of ‘discrete’ (func-
tional) requirements. Rather, the goal is to make progress
to a solution that performs better with regard to the more
‘continuous’ measurements observed for the non-functional
requirements, when executed in the intended environment.

Non-Functional Sensitivity Analysis: It has been ar-
gued [7, 40, 60, 63] that Genetic Programming (GP) can
scale more readily when provided with a guide to identify
the code that should be modified. This is effective when
evolution starts with an existing system, seeking to evolve it
to meet new requirements or to better perform with respect
to existing requirements.

In the GISMOE approach, we advocate the use of a ‘sen-
sitivity’ analysis to identify those parts of the code that

Lwe recognise that there will be many issues in the capture of these
non-functional requirements and their effective measurement [64, 85].
However, our observation is that non-functional properties, when
measurable, can be ‘optimised into’ the system; something that is
much harder for functional aspects of the system.



are sensitive to each of the non-functional requirements.
By ‘sensitivity’ we mean the degree to which the observed
measurements of a non-functional property are affected by
changes to an element of the program. That is, those ele-
ments for which changes lead to larger effects are considered
to be more sensitive.

This analysis is independent of the assessment of the func-
tional properties of the system. For example, we can identify
which code elements most affect speed of execution without
considering whether changing any such element will affect
the functional computation performed; it surely will, but
that is not the point of the sensitivity analysis.

In this way, the sensitivity analysis can produce an order-
ing of program elements according to the degree to which
they are observed (through the sensitivity experiments) to
affect the non-functional property of interest. We shall con-
struct one such ordering for each non-functional property.
The ordering can be used to inform the selection of code
elements to evolve by the GISMOE GP engine.

Advances in Automated Test Data Generation: Re-
cent advances in automated software test data generation
[6, 10, 29, 34, 44, 47, 56, 81] mean that it is possible to
generate a large number of test inputs that achieve cover-
age of structural features of code. While the problem of
test data generation for structural coverage is yet to be fully
solved [57], recent advances in Search Based Software Test-
ing (SBST) [6, 29, 44, 47] and Dynamic Symbolic Execu-
tion (DSE) [34, 81] and their combination [10, 56] have led
to publicly available systems that can generate reasonable
quality coverage-based test suites.

In particular, SBST allows us to target specific test ob-
jectives as fitness functions, thereby generating suitable test
inputs. SBST can provide the GISMOE approach with in-
puts for functional testing by targeting coverage of the initial
version of the program to be developed. However, SBST can
also target non-functional properties [3], thereby providing a
way to improve the targeting of testing towards the specific
non-functional properties of interest.

Since test data generation and the evolutionary search for
new implementations are both population-based optimisa-
tion processes we can develop a co-evolutionary approach
to GISMOE. In the co-evolutionary GISMOE model, the
test cases (both functional and non-functional) are evolved
to try to find faults and worst case performance with the
current best solutions on the Pareto program surface. At
the same time, the programs on the Pareto program surface
are evolved to try to minimise failing functional tests, while
maximising achievement of the non-functional objectives

Plastic Surgery: Previous work on genetic programming
for bug fixing [63] has used a technique sometimes referred
to as ‘plastic surgery’ [40], in which seeds to the genetic
programming systems are provided by locating fragments of
related code elsewhere in the system under evolution. This
fixes faults in much the same way that a plastic surgeon
heals wounds using skin grafts from unaffected areas of the
body.

We propose to extend this code-search from the program
under evolution to all programs that can be found by search-
ing local repositories or the internet. There are large cor-
puses of available code from which the GISMOE system can
seek code. We envisage a situation in which the tool auto-

matically ‘scavenges’ for fragments of code in source code
repositories, choosing fragments that appear promising.

It remains an interesting topic for future work to adapt
techniques for syntactic and semantic similarity measure-
ment to guide such a scavenging process. There is much
work on code search and analysis [21, 73] from which we
might draw inspiration. This scavenging approach may also
raise issues concerning code provenance, which is known to
be an issue with conventionally constructed code [54]. How-
ever, there is no reason why provenance tracking cannot be
built into the GISMOE system: at least it will be more thor-
ough and complete than the records typically maintained by
human programmers concerning code provenance.

Existing Oracles: The code evolved using traditional GP
is only ever as good as the test cases used to define the
fitness function that guides the evolution. This raises the
question of how the engineer can be expected to provide a
high quality test suite, against which the evolution can be
evaluated and guided by the fitness function. SBST can be
used to generate test inputs, but a test suite is made up of
test cases, each of which is a pair containing the test input
and its corresponding expected output.

Constructing good quality test cases represents a signifi-
cant problem in its own right. It involves knowing what the
expected output should be for any given input; the so—called
oracle problem [13, 89]. In traditional software development
of a new system there is no oracle. Fortunately, however,
there exists a wealth of well-tested code that could be used
as a specification of the functional properties of a desired
system.

Each such program p may satisfy the functional objectives,
though it may not satisfy the multiple emerging additional
properties, many of which have a non—functional charac-
ter. We can therefore use automated test data generation
to create a large pool of inputs for which the programming
problem is well-covered structurally and from which the cor-
responding output can be obtained simply by running p.

We can use the original program as the oracle, thereby
producing as many test cases as are needed in order to satisfy
‘correctness up to a certain level of testing’. As part of this
overall research agenda, one might also explore the extent
to which it is possible to use other techniques to ensure that
the evolved code is faithful to the original, such as model
checking and assertion checking.

Observe that this approach is at least as stringent as
the test—based assurances offered by most existing, entirely
human—based industrial development processes. This leaves
open the question: ‘but will the software developer accept
evolved code?’; maybe the evolved code will not be as easy
to understand as that generated by humans®? This is the
question to which we now turn.

Human In the Loop: Even with automated documen-
tation of the generated code, coupled with extensive and
thorough testing, the software engineer may be reluctant to
leave the code development entirely to an automated GIS-
MOE tool. This is not unreasonable.

2This may not be the barrier one might suppose: recent work on
automated documentation of evolved code suggests that evolved code
can be documented to the point at which it becomes competitive, even
for human understandability, when compared to human constructed
patches [31].



While we may do all we can to capture all of the functional
and non-functional requirements the human has in mind, the
engineer is unlikely to be able to precisely specify all of the
ways in which they would seek to constrain the evolution;
they may not even be aware of their implicit coding style
requirements nor their cognitive needs.

Human programmers are notoriously resistant to the task
of reading other humans’ code. Such code is foreign and
treated with skepticism and mistrust. Will they not treat
GISMOE generated code with at least this degree of hostil-
ity? Such code may not only seem foreign, it may even be
regarded as downright alien.

This is why we propose a ‘human in the loop’ approach to
GISMOE. There is a wealth of research on interactive evo-
lution [32] (and its application to SBSE [38, 41, 83]) from
which we can draw inspiration. If the human forms part of
the fitness computation for (samples of) the GISMOE candi-
date solutions, this will ensure that human judgements can
be incorporated into the solutions proposed on the Pareto
program surface. Human judgement may also be essential
for some of the non-functional properties (such as code read-
ability and maintainability). Nevertheless, the development
of this ‘human in the loop GISMOE’ remains an open prob-
lem (discussed in more detail in Section 6.4).

Even with the human in the loop and with extensive test-
ing prior to deployment, the software engineer may remain
nervous. Early adopters of GISMOE prototypes will surely
want some assurance that the GP-evolved solutions they se-
lect from the Pareto program surface will not cause embar-
rassment; no one ever got fired for using human program-
mers. Fortunately, the GISMOE approach has a built-in ‘try
before you buy’ option:

Try Before You Buy: A human developer may naturally
feel more comfortable managing their own code than any
code created using an evolutionary algorithm. Fortunately,
when the developer is unsure of the evolved code there is
a simple solution. That is, if the developer is unsure of
the evolved code then there can be a trial period during
which both the evolved code unit and the original are run
in parallel.

In this way, the developer is never required to allow the
evolved code to take over until sufficient confidence and trust
is attained. Furthermore, any deviance during this trial pe-
riod can simply serve as a stimulus for further evolution and
perfection of the evolved code.

Since the entire process can be automated, the human
need never devote precious time to consideration of any of
the evolved code unless and until sufficient benefit has ac-
crued. The benefits of using the evolved code can be auto-
matically assessed as the evolution progresses through the
repeated computation of fitness. Therefore, the software de-
signer can set a threshold above which the solutions found
become interesting, and simply continue to use the ‘dual
code’ version until such a threshold is reached.

Insight: The GISMOE approach does not require the soft-
ware designer to accept any of the evolved solutions in order
to be useful. The software designer can also use GISMOE to
explore the multi-objective candidate solution space, gain-
ing insight into what can be achieved by balancing several
competing constraints. In this way the technique can be
thought of as a source of stimuli for ‘eureka moments’.

It may be that GISMOE has found an unexpected inno-
vation that can effect a dramatic improvement in the trade
off between objectives. Such behaviour is very common for
evolutionary algorithms, because they simply optimise for
the objectives they have, unconstrained by assumptions and
biases that may lead a human towards certain solutions.

The software designer can identify particularly interesting
programs on the Pareto program surface. The GP engine
can then generate many new programs close to the ones the
designer prefers and can pool these to automatically identify
those aspects that the programs share. The common code in
all such solutions may be relatively small and thereby reveal
the insightful ‘coding trick’ used to achieve the interesting
results observed. Even when the common code is large, it
can be winnowed by further considering the results of the
sensitivity analysis; code can be presented to the human in
a prioritised order, depending on the effect it has on the
non-functional properties of interest.

Component by Component: One does not need to at-
tempt to evolve a whole system at once. Components of
the system can be identified and re-evolved one at a time.
Using sensitivity analysis at a coarse level of granularity, we
can identify components that would most affect the non-
functional properties of interest and focus on these first.
In this way, we can gradually evolve the overall system,
component-by-component, focussing first on replacing those
components most critical to the non-functional properties
of interest. Over time, the deployed system will gradually
include more and more evolved code, though some original
human code may always remain. This is another way in
which GISMOE might achieve ‘scalability by stealth’.

4. PROPOSED GISMOE ARCHITECTURE

The proposed GISMOE architecture is depicted in Fig-
ure 2. Dotted lines indicate choices of components. Solid
lines indicate data flows. The ‘fixed software’ is the code
that is not changed by GP. The choice of platform and
fixed software constitute the environment in which the non-
functional properties are evaluated. Together, these non-
functional evaluators constitute the collections of multiple
objective fitness values for which GISMOE seeks Pareto
optimal solutions (thereby creating the Pareto program sur-
face).

The software developer can choose to combine arbitrary
sets of non-functional-property fitness functions with differ-
ent environments to make a harness that provides fitness
data as an input to the GP engine and sensitivity analysis.
Test cases can come from any test data generation tech-
nique, for which there are many options (already available)
that can be used as a component to GISMOE.

Sensitivity information can be pre-computed before the
GP improvement process commences. The sensitivity of the
program to each non-functional property is computed using
the non-functional evaluation harness. This process requires
no knowledge of the functional test cases, since it seeks to
identify those parts of the program that are non-functionally
sensitive, irrespective of functional properties.

The result of the sensitivity analysis is a prioritised list of
program elements for each non-functional property of inter-
est. This is used by the GP engine to prioritise for evolution
those parts of the program that are more sensitive to the
non-functional property of interest.



Existing Code ~ |-------------- »

Executable
Functional
Oracle

Executable
Declarative

Specification

Sensitivity Sensitivity
Analysers Analysis

<
Test Data
Generators
Test Cases

—
7

N l
GP
Engine

Evolution

Non-functional )
Speed Bandwidth) , , ,
i N PN S PN N D ™
|
Fixed Embedded ;Zﬂz e
Software System Middleware|
]

Mobile
Device

Example Test Hamess
Instance

y
v,

Mobile T

Original Solution

New Best Test Data
Solution Generators
Parallel Execution

e —
New Test Data

Figure 2: The GISMOE Architecture

If the program becomes very different to the original,
then the sensitivity analysis may be recomputed. In the
co-evolutionary GISMOE model, test case generation and
GP evolution proceed in tandem.

The description of the functional properties comes from
either an initial version of the program (code reuse) or from
a newly written declarative specification of functional be-
haviour, which also serves as an initial version (albeit, one
that will be constructed with no attempt to optimise for
non-functional properties).

The definition of a suitable declarative language for ex-
pressing functional oracles to guide the GISMOE evolution,
remains an open problem discussed in more detail in Sec-
tion 6.2. This description of the functional properties (how-
ever obtained) is used to provide the oracle for testing, so
that the test inputs from the tests input generation can be
computed with expected outputs to form test cases.

The GP engine uses the test cases and the non-functional
harness to compute its fitness. In the conformant version of
GISMOE, the only solutions considered are those that pass
all test cases (these programs are functionally conformant
and the approach is conformant to the view that ‘correctness
is paramount’).

4.1 The Heretical Version of GISMOE

In the heretical version of GISMOE, the human is permit-
ted to see versions of the program that do not pass all test
cases. In the heretical world view, functional correctness is
merely another dimension on which to plot programs on the
Pareto surface, thereby allowing the software designer to ex-
plore the ways in which the functional and non-functional
properties might be traded off against each other.

Perhaps future generations of software engineers will won-
der what all the fuss was about: why would our stand-
point on functional correctness be considered so very hereti-
cal? How could functional correctness ever have trumped all
other system properties?

Anyone who believes that functional correctness should be
paramount (surpassing all non-functional properties in im-
portance) should try to execute proven functionally correct
software on a device with a flat battery. We may thus sum
up our heresy more succinctly as follows:

Awvailability of sufficient resources for computa-
tion is the ultimate correctness concern.

Previous work has already been undertaken to demon-
strate the feasibility of optimising programs for a combina-
tion of functional and non-functional properties, in which
the functional properties of the system are traded for im-
provements in power consumption [92] and speed [82].

However, this work was, arguably, not heretical because
the functional properties in question were based on contin-
uous quality assessments that can be degraded gracefully
(randomness [92] and graphical smoothness [82]). If a hu-
man cannot perceive the difference between the quality of
each solution, then there may be no ‘down side’ to the trad-
ing off functional properties such as these, against improve-
ments in performance.

The heresy proposed by the ‘heretical’ version of GIS-
MOE is that one might even countenance the loss of cor-
rectness where it is painfully noticeable, in order to achieve
better performance for a non-functional objective. Perhaps,
in some circumstances, even a program that fails to meet all
of the functional test cases (spectacularly crashing without
warning) may be acceptable (even desirable) should it per-
form quickly and with minimal heat dissipation. That is,
a user may prefer this ‘crasher’ to a correct program that
never crashes but which is slow and consumes more power.

For example, suppose one is running a cloud data centre
in which a crashed computation can be re-started efficiently
and effectively and without loss of data. A faster, lower
power consumption, version of the computation that crashes
a little more often may be attractive and cost-effective in this
situation.



Similarly, on a long haul flight from London to New York,
a hot laptop that runs out of battery half way through the
flight is less usable than one that remains cool and lasts the
entire flight. Of course, though one might want heretical
GISMOE software running on one’s personal computing de-
vices during the flight, one is unlikely to want it controlling
the aircraft itself.

4.2 Dynamic Adaptive Search Based Software
Engineering

In the bottom right-hand corner of Figure 2 we see the de-
ployment model we envisage for GISMOE’s software prod-
ucts. The original and the evolved version selected by the
software designer for a chosen environment are executed (for
a trial period) ‘in parallel’ within the selected deployment
environment. Testing can thus continue once the code is
deployed, using user sessions with the system as a source of
test cases.

This is the ‘Try Before You Buy’ model of adoption that
we described in Section 3. Different versions of the system
will be deployed in different environments, using the original
program as a continuing oracle. The user need not accept an
evolved alternative unless and until they are satisfied with
the performance and behaviour of the system in its intended
environment.

In some situations, where spare power is available, we can
also perform further testing, in-situ, using a test data gen-
erator. In this way, we can deploy a self-testing version of
the evolved software, together with its test harness and test
generator.

Of course this will increase deployed code size and so it
may not be appropriate for some systems, where compact
code was an important non-functional requirement. In such
situations a client-server approach may allow the deployed
code to retain communication with a server that continues
to monitor performance. This would be possible in circum-
stances where spare communication bandwidth is available.

Suppose that we could embed into the deployed software
the entire GISMOE system or to run a monitoring service
using some form of client-server approach. If we could find
a way to continue to operate the entire GISMOE engine
and its supporting systems (measurement and analysis of
non-functional sensitivity and the oracle) together with the
deployed software system, then we would have found a way
to achieve Dynamic Adaptive Search Based Software Engi-
neering [43].

Dynamic adaptivity is also the goal of the ‘Dynamic Adap-
tive Automated Software Engineering’ (DAASE) project.
This is a large UK Engineering and Physical Sciences (EP-
SRC) ‘programme grant’ with a programme of work on dy-
namic adaptivity running from 2012 to 2018. More details
about the project and opportunities for (part-funded) col-
laboration with the DAASE programme can be found in the
ESEM 2012 keynote paper [43].

It may not prove possible to embed into deployed soft-
ware the entire GISMOE system. We may need to tailor
the system to achieve this or to find smart ways to con-
tinue an on-going evolutionary improvement process once
the GISMOE-evolved software is deployed. Nevertheless,
we hope that parts of the approach can be ‘compiled into’
the deployed code so that the code can adapt to changes in
environment that affect non-functional performance.

S. WHY GISMOE IS FEASIBLE

Recent advances in Genetic Programming have indicated
that it is able to balance many different competing and po-
tentially conflicting objectives in other engineering paradigms
and to scale the applications of GP from small code frag-
ments to the evolution and re-evolution of components of
larger systems.

It is increasingly recognised that optimisation in general
(and computational search in particular) also has the poten-
tial to meet Software Engineering objectives, through the
recent rapid growth in work on Search Based Software En-
gineering [37]. In this section we summarise some of the
recent work that, we believe, provides evidence that the GIS-
MOE vision is feasible.

Bug Fixing: Genetic Programming is evolving. Work on
GP for automated bug fixing [8] has rapidly developed, with
results that demonstrate that it is already possible to find
and fix non-trivial bugs [36, 63, 88|, generating patches that
are reasonably human-readable [31].

For the GISMOE agenda, the important observation from
this work is:

The original program serves as an ideal oracle for
the re-evolution of fragments of new code.

In work on patching, the amount of code generated by
GISMOE is very small, but the larger size of the program
to which the patches have been applied is encouraging. The
work shows the value of seeding the search with fragments
of existing code and pinpointing the areas of the existing
program that need to be targeted for evolution.

Migration: Recent work on code migration using a subset
of the GISMOE approach [60] has demonstrated that non-
trivial, real world programs (in this case the UNIX utility
gzip) can be re-evolved, by focusing on the component that
plays a primary role in the computation. The GP engine was
able to port this kernel component of gzip to an entirely new
platform (from desktop to graphics processing card).

The GP engine had available only fragments of CUDA
code that were entirely unrelated to compression and the
gzip original. The original served as the oracle for testing
purposes, yet the evolved version was found to be function-
ally correct (as evaluated by extensive regression testing and
detailed human examination of the resulting code). These
results are encouraging because they involve the evolution-
ary generation of larger fragments of code than patches and
also migration to unfamiliar and unseen platforms and op-
erating environments. The primary observation of interest
for the GISMOE agenda arising from this work is:

Code can be re-evolved from one environment to
an entirely new environment and programming
language.

However, many more problems remain to be fully solved:
the test suites were the result of unautomated human in-
genuity, as was the kernel component identification process.
We hope that future work on the GISMOE agenda will incor-
porate state-of-the art test data generation techniques and
advances in non-functional sensitivity analysis on which we
are presently working.



device__ int kernel978(const uch *g_idata, const int strstart!, const int
strstart2)

{

int thid = 0;

int pout = 0;

int pin=0;

int offset = 0;

int num_elements = 258;

for (offset = | ; G_idata( strstartl+ pin ) == G_idata( strstart2+
pin ) ;offset ++)

{
if('ok()) break; default
thid = G_idata( strstart2+ thid ) ; fixed by template
pin = offset ;
} evolved
return pin ; evolved but no impact
4

Figure 3: A fragment of evolved gzip code[60].

Trading Functional & Non-Functional Requirements:
Previous work on searching for alternative balances between
functional and non-functional requirements has also been
promising. White et al. [92] evolved different versions of
a pseudo random number generator with a range of power-
consumption characteristics. The important observation of
this work for GISMOE is that

Functional properties are ‘just another optimisa-

tion objective’, like non-functional properties.

This previous work was not an instance of ‘heretical GIS-
MOE’ because the non-functional property in question was
the degree to which the outcome of random number gen-
eration could be said to be ‘random’. Figure 4 shows the
results. In this case the resulting set of programs trade-off
pseudo random number quality (as measured by the Strict
Avalanche Criterion) against the likely power consumption
of the implementation (as estimated by the Sim-Wattch sim-
ulator). The figure shows the results of the generation of
programs for pseudo random number generation, tested on
4,096 test cases for power consumption and randomness.

The results yield a two dimensional Pareto surface (a
‘Pareto front’) with knee points. The lower on the verti-
cal axis a program is plotted, the more ‘random’ are the
numbers it generates. The further to the right are the pro-
grams on the horizontal axis, the more power is consumed
when the program executes. The knee points indicate that
there are regions of the Pareto program front for which a
considerable increase in randomness can be achieved with
a modest increase in power. It also reveals other regions
where much more power is required for a relatively small
improvement in randomness.

Compatible Crossover: Recent experimental results from
the FINCH project [71] demonstrated that the use of a ‘com-
patible crossover’ could dramatically increase the effective-
ness of GP when evolving novel implementations of Java
bytecode. The use of smarter typed and context-respecting
genetic operators such as this may improve the applicability
of code scavenging approaches, such as the ‘plastic surgery
scavenging’ that we propose in this paper. The lesson we
learn from this work for GISMOE is that

Type awareness reduces the search space and makes
genetic operators more effective.
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Figure 4: Functionality (vertical axis) vs. power

consumption (horizontal axis) [90].

Software Uniqueness: Recent empirical analysis of a large
(420 million lines of code) corpus of code by Gabel and Su
[33] reveal that code may not be as unique as one might
suppose. The code produced by human programmers does
not even begin to explore the conceptually infinite (and prac-
tically enormous) space of possible programs expressible in
a language. Source code is far more constrained and less
varied than natural language [51]. For the GISMOE agenda
the important finding is that

The space of candidate programs is far smaller
than we might suppose.

This observation means that the search space for candi-
date solutions to programming problems may turn out to be
far less challenging than previously thought. Furthermore,
the existence of such large (half billion LoC) repositories of
available code, in which one has to write approximately 6
statements before one is writing unique code (up to consis-
tent identifier replacement) [33], provides a ready source of
seed material for GISMOE'’s ‘plastic surgery’ (See Section 3).

Dynamically Discovering Static Truths: Work by Ernst
et al. [22, 23] has demonstrated that likely program invari-
ants can be inferred from test cases for programs. Though
there remain challenges in finding useful, insightful and com-
pact sets of invariants using this approach to dynamic asser-
tion discovery, the fundamental observation that underpins
this work has profound implications for software engineering
(and our GISMOE agenda):

A small amount of dynamic information is suf-
ficient to approzimate (and sometimes precisely
capture) static information.

It is upon this observation of the surprising power of test-
ing that we rest our claim that testing may prove to provide
a sufficing guide to the GP engine with respect to func-
tional properties, and ultimately, the correctness of the code
evolved by GISMOE.



Multiplicity, Product Lines & N-Versions:

There has been much recent interest in the concept of
‘multiplicity computing’ [16], in which many versions of a
system are deployed. By engineering diversity into differ-
ent versions of a system we may generate solutions that can
defeat some kinds of malware attack [78]. Multiplicity has
also been advocated as a means of achieving resilience in the
presence of change [16]. Techniques developed for multiplic-
ity computing can also be incorporated into a GISMOE ap-
proach: they may provide alternatives to GP as a means of
searching the space of candidate solutions.

Diversity and dynamic adaptivity [43] can also be sources
of resilience (against change and attack). GISMOE may
have a contribution to make to this agenda. That is, by gen-
erating a range of solutions, we are automatically working
within a ‘multiplicity computing’ paradigm. We can make
implementation diversity one of the non-functional proper-
ties for which we optimise, thereby creating a diverse pareto
surface of solutions. All those found within acceptable toler-
ance can be deployed simultaneously, leading to a GISMOE-
inspired approach to diversity and multiplicity.

Pioneering early work by Feldt on the problem of using GP
to generate multiple instances of a solution demonstrated
that GP could be used to generate an automated form of N-
version computing [25]. The use of GP in this work overcame
the principle obstacle to wider use of N-version computing,
by dramatically reducing the cost involved in hiring multiple
development teams. GISMOE seeks to take this further: In
the case of the Pareto program surface, N can be very large,
while the incorporation of different non-functional properties
allows the spread of solutions to address multiple conflicting
and competing objectives.

There is also increasing interest in software engineering for
Software Product Lines (SPLs) [18, 35] for which there are
many variants of the systems under development for differ-
ent platforms and instantiations. The design and manage-
ment of SPLs is increasingly common in software for con-
sumer products such as automotive and white goods, where
all products in a product family share a common core set of
program features, but for which each member of the family
may exist on a different branch of the product tree. Each
branch selects or de-selects features, leading to different im-
plementations at the leaves.

SPLs are also increasingly common because many applica-
tions run on multiple platforms. Managing and controlling
the plethora of different versions of a system is a challenge.
The GISMOE approach may also offer solutions to some of
the issues raised by SPLs. For example, using GISMOE, we
can create new branches automatically: the GP engine will
evolve the new versions of the product family from exist-
ing members of the family. We may also be able to merge
versions when the product family becomes large or unwieldy.

6. OPEN CHALLENGES

This paper sets out our vision for the GISMOE approach,
but there remain several challenges to be overcome in order
to see this vision realised. We hope that this paper illus-
trates the value of the GISMOE research agenda and goes
some way towards decomposing the overall grand challenge
into more manageable components. Many of these compo-
nents are current topics for the SBSE, GP, optimisation, and
testing communities.

In this section we summarise some of the open challenges
for the realisation of the GISMOE grand challenge, high-
lighting areas of current work that offer promising sources
of potential solutions.

6.1 Measuring Non-Functional Properties as
Fitness Functions

We have rather glibly dismissed the engineering problems
involved in accurately, efficiently and effectively measuring
non-functional properties of software in its intended deploy-
ment environment. However, many challenges and open
problems reside within this part of the GISMOE research
agenda.

Some non-functional properties are notoriously hard to
measure using current techniques, such as power consump-
tion and heat dissipation. In order to optimise for any of
these properties we must be able to measure them. Mea-
surements must be sufficiently precise to inform the sensitiv-
ity analysis and the GP evolution engine. These challenges
must be addressed, not only because they are a require-
ment of the GISMOE agenda, but because without effec-
tive measurement, these properties cannot be controlled by
any approach. Indeed, it has long been a rallying cry of the
software metrics community (paraphrasing Kelvin [55]) that

You cannot control what you cannot measure.

This observation is no less true of non-functional proper-
ties than it is of any other aspects of the software develop-
ment process and its products; if a non-functional property is
important and we seek to improve performance with respect
to this property, we cannot hope to find any engineering so-
lution, should we find ourselves unable to even measure the
property of interest.

6.2 Using Declarative Languages to Describe
Functional Properties

It was the founding principle of functional programming
[27] that one should design programs in a declarative style,
concentrating on the correctness of one’s program, and leav-
ing the efficiency of implementation to an automated ‘im-
provement’ system. This vision of ‘correctness first; effi-
ciency second’ inspired much early work on automated pro-
gram transformation systems [20, 72].

For these early pioneers of functional programming, the
non-functional property of concern was execution time [20].
Systems were implemented in large stand alone mainframes,
and there was little concern for other properties such as
power consumption and heat dissipation, which were seen
merely as the necessary evils of computation. In fact, the
very foundations of algorithmic complexity are based on the
belief that the primary computational resources of concern
are time and space and all efforts at program improvement
have, hitherto, tended to focus on these two aspects.

The GISMOE agenda shares the separation of concerns
between functional and non-functional properties of a sys-
tem. However, we widen the pool of non-functional prop-
erties to be considered and we propose the use of computa-
tional search (such as GP) to find the efficient solutions we
seek, rather than the transformation of the original into a
more efficient version (though search-based transformation
might also be considered [24, 77] to be an alternative vehicle
to achieve GISMOE).
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Figure 5: A more realistic Pareto program surface

For entirely new computational problems, where there is
no existing code to be used as an oracle, the GISMOE ap-
proach will require a description of the functional properties
of the system to be evolved on the Pareto program surface.
In this situation, a declarative programming notation would
seem to present the ideal programming language in which
to express the oracle.

One simply wants the functional properties, without con-
sideration of the non-functional properties, which will sub-
sequently be ‘optimised in’. This is precisely what func-
tional programming was designed to achieve. Initial results
indicate that GP-evolution of code in entirely different lan-
guages from those in which the oracle is written is possible
[60]. Therefore, we can envisage the specification of func-
tional properties in a functional language, and the evolution
of instances on the Pareto program surface in any one of
many more imperative languages.

6.3 Visualisation of Complex Pareto surfaces

Another aspect of the GISMOE vision that has been rather
glossed over in this paper is the visualisation of the Pareto
program surface itself. Where there are only three objec-
tives to be considered, we can suppose that these will be
viewable on a three dimensional surface of solutions. How-
ever, where the software designer is interested in more than
three properties, a higher dimensionality will be required,
posing challenges for the visualisation of the Pareto program
surface.

Even where the surface is to be rendered in only two or
three dimensions, the presence of programs on the surface
may be more sparse than we might like, making it hard to
identify knee points and the overall shape of the surface it-
self. Rather than a nice, evenly spread and dense Pareto
program surface like that idealised in the illustration in Fig-
ure 1, we might find ourselves attempting to visualise and
explore a surface more like that depicted in Figure 5.

To address this, we might need interpolation of solutions
between points to aid visualisation even where such points
do not exist. We might also present non-pareto-optimal
points, merely to fill in areas near the surface with can-
didate non-dominated solutions. Where the pareto program
surface consists of more than three dimensions, we may use
projection to visualise the trade offs between any three of
these, with the engineer considering multiple views.

Other, more advanced visualisation techniques using graph-
ics and virtual reality may also help in this GISMOE visu-
alisation agenda. The problem of visualising multi dimen-
sional space is one that finds application in many fields; GIS-
MOE can exploit any such advances.

6.4 Human in the loop:
Interactive Optimisation

We have proposed the use of a ‘human in the loop’ ap-
proach to incorporating aesthetic and other subjective judge-
ments about software design, architecture and coding style
into GISMOE. We have experimented with an interactive
evolutionary pretty printer [38] to produce a tool that ex-
plores the software designer’s preferences with respect to
program layout [59]. However, this is very early work and
does not address the complexities involved in bringing the
human designer fully into the evaluation of fitness.

One of the primary challenges of all work on interactive
evolution lies in the issue of fatigue; no human designer will
want to look at many evolved solutions, though the system
may generate billions. This requires smart selection and
presentation techniques that can quickly and unobtrusively
extract human assessments. One approach to this problem
might be to use eye tracking systems to capture the human
judgements about code without interfering with the engi-
neers’ reading and examination of the solutions offered.

6.5 Test data generation

For each program generated we shall need to identify worst
cases, which will involve test data generation for all proper-
ties (rather than merely relying on the test cases generated
to cover the functional properties with which the process
commences). This will pose a challenge for test data gen-
eration. We shall need fast construction of test cases for
a rapidly changing suite of programs, all of which are re-
lated to one another, targeting the worst case for some non-
functional property of interest.

Fortunately, search based test data generation can be tar-
geted at non-functional properties (such as temporal prop-
erties [74]), and there is also much work on the problem
of regression test optimisation [93]. For GISMOE, we shall
need to develop techniques that can adapt and develop new
test cases on-the-fly as the evolution process takes place.
Promising approaches to this problem include co-evolution
of test cases and code [1, 7] and test regeneration and aug-
mentation [80, 94].

Our approach puts great stress on the importance of test-
ing. Ultimately, if the GISMOE vision is achieved, then
much of what we now regard as programming will be auto-
mated, with the result that human attention will move to
the earlier stages of the software development process.

In a ‘GISMOE software engineering world’, the locus of
human ingenuity will traverse the interface between require-
ments and testing. The designer will thereby concentrate on
the assurance that software does what it is intended (func-
tionally) and that it does so as best as possible and within
acceptable tolerance (for non-functional properties), given
the operational environment in which it is deployed.

We shall require better automated testing than we cur-
rently have available in order to achieve greater confidence in
the code automatically produced by GISMOE. Fortunately,
the presence of an automated oracle, will mean that test
generation can be entirely automated.



Consequently, there will be orders of magnitude improve-
ment in the testing resources available, at a fraction of the
cost of current laborious manual test processes.

We shall also need a tighter coupling between the user
requirements (their elicitation, negotiation and change) and
the test process (the generation, selection and prioritisation
of test cases). Work on the interactions between require-
ments and testing as the primary vehicle for describing and
ensuring software usefulness is a long overdue (and hitherto
under-explored) topic. There has been work on the devel-
opment of approaches to optimise the requirements negoti-
ation and elicitation process [28, 49, 79, 98] and to optimise
the selection and prioritisation of testing [93]. We need an
optimisation approach that seamlessly encompasses both re-
quirements and test optimisation [43].

6.6 Incorporating the Operational Profile

We have focussed on the non-functional aspects of the dif-
ferent environments into which we may deploy GISMOE pro-
grams. We might also consider the way in which some oper-
ating environments do not exercise the code on all possible
inputs. In one environment the operational profile might
be very different from another. For instance, two different
users of a weather app on a smart phone might be concerned
with different locations, seldom if ever considering location
inputs outside a narrow range.

We can use profiling to exploit the operational profile of
the environment in the evolutionary process [91]. Through
profiling we can select or modify the test cases that are used
to test both functional and non-functional aspects of the GP-
evolved code. In so-doing we shall be creating specialised
programs that are optimised for their operating environment
(an idea that resembles the early work on partial evaluation
[12, 14] as a means of program specialisation).

7. RELATED WORK

The GISMOE approach set out in this paper draws heav-
ily on previous Search Based Software Engineering (SBSE)
work, particularly the work on test optimisation and genetic
programming for software engineering. SBSE consists of
the reformulation of software engineering problems to make
them amenable to the application of computational search
(as well as optimisation techniques more usually associated
with Operations Research) [17, 45]. SBSE has grown rapidly
in the past ten years [30], and has found many applica-
tions including Requirements [98]; Predictive Modelling [2,
41]; Non-Functional Properties [3]; Program Comprehension
[38]; Design [76] and Testing [3, 5, 39, 65].

There has been industrial uptake of SBSE techniques at
Berner and Mattner and Daimler [56, 87], Cisco [50], Erics-
son [4, 97], Google [96] Microsoft [15, 58], Motorola [11] and
NASA [19]. There are also a number of SBSE tools, many of
which are publicly available, supporting SBSE applications
right across the range of software engineering activities from
release planning [69], through design [66] to testing [6, 29,
53, 56, 84] refactoring [67] and patching [63].

Surveys and tutorials on SBSE can be found elsewhere in
the literature [2, 3, 37, 42, 46, 48, 65, 76]. The GISMOE ap-
proach essentially seeks to extend previous work on genetic
programming for software engineering.

Decomposition has proved to be an important problem
for work on GP [52, 86]. The GISMOE approach also seeks
scalability through building block decomposition.

It uses building blocks at fine granularity (through plastic
surgery) and also at the coarse granularity (through hybrid
componentisation).

Various approaches have also been proposed to constrain
the recomposition of GP fragments [9, 61, 70, 71, 68]. The
GISMOE approach also seeks to constrain the way in which
GP is applied to evolve new programs for non-functional
properties through sensitivity analysis.

The GISMOE approach is also an inherently explorative
and multi-objective GP approach. Feldt [26] was an early
advocate of an explorative approach to GP. Although there
has been some previous work on multi-objective GP ([61,
92]) most multi-objective optimisation research has concen-
trated upon other forms of evolutionary algorithm.

Scalability of GP approaches has also been addressed us-
ing novel parallel hardware platforms. For example, Poli [75]
distributes the GP population across multiple computers
(demes), while Langdon exploited the parallelism of GPGPU
hardware [62]. Yoo et al. [95] were the first to use GPGPU
for an SBSE problem, but their approach used a genetic al-
gorithm, not genetic programming. The GISMOE approach
may also benefit from parallel execution to help scale the
multiple fitness and test evaluations required by the ap-
proach.

8. CONCLUSION

As non-functional requirements become ever more press-
ing, numerous and their interactions more complex, we sim-
ply cannot expect human ingenuity to cope; some form of au-
tomated exploration of programming space will be required.
A step change in what we expect from a software devel-
opment environment will be needed. The achievement of
a development environment capable of producing a Pareto
program surface addresses this problem. It is a grand chal-
lenge for the software engineering community.

We do not underestimate the magnitude of this challenge,
but the potential benefits make it a worthy goal. When
it is accomplished, it may radically transform our view of
programming and, indeed, that entity we currently call ‘a
programmer’.

Before 1950 the word ‘computer’ was a term used to de-
scribe a human who performed repeated (often tedious and
error-prone) computations by hand and brain. How strange
and dated this interpretation of the word ‘computer’ now
seems. How much has human development been accelerated
by the advantages of automated computation? Speed, preci-
sion, reliability and scale have combined to change the way
our world works.

Will future generations look back on our use of the term
‘programmer’ with the same, perhaps nostalgic, but un-
doubtedly deprecating and even condescending eyes? How
quaint it will seem, in an age of automated programming, to
think of ‘programmers’ as rows of humans, packed into felt-
covered boxes, working on such tedious, repetitive and error-
prone tasks. How costly, inefficient and wasteful of human
ingenuity that we would task some of our smartest individ-
uals with the construction of perhaps one or two programs
on a Pareto surface, when an automated programmer can,
with a fraction of the time and cost, produce a multitude
of solutions all of which outperform the human-generated
solutions.
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