
Correctness Attraction:
A Study of Stability of Software Behavior Under Runtime Perturbation

Benjamin Danglot, Philippe Preux, Benoit Baudry, Martin Monperrus,

Empirical Software Engineering, August 2018, 23(4) pp 2086-2119
doi:10.1007/s10664-017-9571-8

W. B. Langdon

19.9.2018

Slides for Software Systems Engineering SSE Reading Group,19 September 2018

Started 1996

Impact Factor 2.933

Editor-in-Chief: R. Feldt &

T. Zimmermann

Springer

Editorial Board includes:

Massimiliano Di Penta, Mark

Harman, Miryung Kim, Tim

Menzies, Martin Monperrus,

Federica Sarro, Martin

Shepperd, Paolo Tonella,

Shin Yoo, Andreas Zeller

http://dx.doi.org/doi:10.1007/s10664-017-9571-8
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://sse.cs.ucl.ac.uk/reading_group/
http://www.robertfeldt.net/
http://thomas-zimmermann.com/

Introduction

Prof. Martin Monperrus presented

“Correctness Attraction…” at ICSE-2018

as a “Journal first paper”

W. B. Langdon, UCL 2

https://www.icse2018.org/event/icse-2018-journal-first-papers-correctness-attraction-a-study-of-stability-of-software-behavior-under-runtime-perturbation

Correctness Attraction
• What does the title mean

• Why this paper

• Who are these guys

• Why is correctness attraction important

• What should we do

– Stop teaching prefect programming

– Continue to show software is not fragile

– Evolve increased levels of robustness

• Conclusions
W. B. Langdon, UCL 3

Authors
• Benjamin Danglot

– PhD student, INRIA

• Philippe Preux

– Prof. University of Lille 3, INRIA

– adaptive systems, machine learning

• Benoit Baudry

– Prof KTH Stockholm

• software diversification

• Martin Monperrus

– Prof KTH Stockholm

• How to automatically repair software?

• How to construct self-healing software?

H26

H4

H42

https://www.google.com/maps/place/Universit%C3%A9+de+Lille,+Campus+Pont+de+Bois/@50.6347453,0.885095,7z/data=!4m5!3m4!1s0x47c2d63c7ee12969:0x127777536bec7c6f!8m2!3d50.627577!4d3.126726
https://www.monperrus.net/martin/
https://www.kth.se/profile/baudry
http://chercheurs.lille.inria.fr/~ppreux/index-us.php
https://danglotb.github.io/
https://scholar.google.co.uk/citations?user=dJQf4SYAAAAJ&hl=en&oi=sra
https://scholar.google.co.uk/citations?user=ZIj5dCgAAAAJ&hl=en&oi=sra
https://scholar.google.co.uk/citations?user=oP4UxPkAAAAJ&hl=en&oi=sra
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=18052

What does title mean?
Correctness Attraction:

A Study of Stability of Software Behavior Under Runtime Perturbation

• Correctness attraction

– output is not changed by perturbation during test

execution (NB using perfect test oracle)

• A Study of

– Experiments

• Stability of Software Behavior

– Tendency of program output to be unchanged

• Runtime Perturbation

– change an expression’s value as program is run

5W. B. Langdon, UCL

Why this paper
• Tie in with UCL Software Systems Engineering

– Genetic Improvement

– “Software is not fragile”

– errors failing to escape code

– equivalent mutants in mutation testing

• Over turn fear of automated software

modification

• If software is naturally somewhat correct, can

we evolve it so as to increase its tendency to

be correct?

W. B. Langdon, UCL 6

https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html

What did they do

• Java source code consider either int or

boolean expressions

• Wrap all target expressions in perturb

function:

– p(index, input)

– usually p() returns input (no semantic change)

– exactly once one p() makes one change

• First run normally for each test case to find

how many times each p() is called

• Exhaustively try all (hence small examples)
7

What did they do
• 10 small (42 to 568 lines) diverse Java:

quicksort, zip, sudoku, md5, rsa, rc4, canny, lcs,

laguerre, linreg

• PONE add one, MONE -1, PZERO return 0,

PBOOL flip boolean

• PONE approx three million experiments.

≈two million (68%) pass perfect oracle

• Some parts of programs more stable

• Some types of perturbation (e.g. boolean)

more disruptive than others, c.f. Yue Jia’s

equivalent mutations
8

http://doi.acm.org/10.1145/2568225.2568265

PONE on quicksort

• 41 int expressions

• Most PONE perturbation sites always or

nearly always still pass all tests

• 4 locations where adding one almost

always causes quicksort to fail

W. B. Langdon, UCL 9

10

>85% correct

≤2% correct

11

PONE on ten programs
Results like quicksort but variation between programs

PONE perturbability profiles ten Java programs

13

Summary: PONE +1 once per test

• The ten Java programs can have an error

injected without always failing

• There are a small number of fragile int

expressions.

• Most int expressions can be perturbed and

yet the program remains correct

• “Dijkstra’s view that software is fragile is

not always true, correctness is rather a

stable equilibrium than an unstable one.”

page 2098
14

Minus one

Effect of subtracting one from exactly one int

expression once when Java program is run

very similar to effect of adding one.

MONE ≈ PONE

W. B. Langdon, UCL 15

Setting to zero

Effect of replacing value of one int

expression exactly once at runtime is similar

to effect of adding or subtracting one, but

slightly more disruptive.

“we observe 63% of correctness attraction

with PZERO and 77% with PONE.”

W. B. Langdon, UCL 16

Flipping boolean

• Flipping one boolean expression value

exactly once at runtime tends to be more

disruptive than a similar runtime change to

int expressions in Java programs.

• Nonetheless many PBOOL changes give

right answer across the whole test suite.

• Mean correctness ratio across ten Java

programs PBOOL 37% (PONE 66%).

• Some Java programs where PBOOL is

usually disruptive
17

PBOOL on quicksort

W. B. Langdon, UCL 18

PBOOL on ten Java programs

W. B. Langdon, UCL 19

The distribution of PBOOL Perturbability

20

Critique

• Artefact of chosen programs?

– May be, but using non-trivial examples.

– Perhaps bigger programs are more robust?

• Artefact of chosen test suites?

– Seem to have done good job

– Better than usual industrial practice?

• Artefact of Java?

– Seems unlikely. Reasons given (Section 5)

would apply in other programming languages

W. B. Langdon, UCL 21

Conclusions

• Why

– programs lose information as they execute.

• e.g. calculate mean. Programs cannot be reversed.

Many paths lead to same output.

– Tendency to correctness is tendency to

produce the same output as the unperturbed

“correct” execution.

– run time perturbations behaving like source

code perturbations, c.f. genetic improvement

• What should we do

– Continue to show software is not fragile

– Evolve increased levels of robustness
Their code is on GitHub

W. B. Langdon, UCL http://www.epsrc.ac.uk/

Humies: Human-Competitive

Cash prizes

GECCO-2019

GI 2019, Montreal,

25-31 May 2019

ICSE workshop

Submissions due

1 Feb 2019

20th birthday special issue

by 17 Oct 2018

http://www.epsrc.ac.uk/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.genetic-programming.org/combined.php
http://geneticimprovementofsoftware.com/
http://www0.cs.ucl.ac.uk/staff/W.Langdon/everyware/gpem_20th_anniversary_cfp_deadline_17-october-2018.pdf

W. B. Langdon, UCL 2424

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Programming

W. B. Langdon

CREST

Department of Computer Science

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

W. B. Langdon, UCL 26

W. B. Langdon, UCL 27

W. B. Langdon, UCL 28

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

12579 references, 11000 authors

RSS Support available through the

Collection of CS Bibliographies.

Co-authorship community.

Downloads

A personalised list of every author’s

GP publications.

blog

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

Make sure it has all of your papers!

E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Downloads by day

Co-authorships

Your papers

http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.bham.ac.uk/~wbl/biblio/blog.html
http://www.cs.bham.ac.uk/~wbl/biblio/blog.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://www.cs.bham.ac.uk/~wbl/biblio/top_users.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-coauthors/index.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/index.html
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi

