Genetic Improvement: A Key Challenge for Evolutionary Computation

Key Challenges and Future Directions of Evolutionary Computation Workshop, Yun Li et al. IEEE CEC-2016

W. B. Langdon
Department of Computer Science

2.8.2016
Genetic Improvement of Software

• Background
 – What is Genetic Improvement
 – Recent successes: automatic bug repair, better programs, code transplant.
 – Pragmatic: EC and human, semantic search

• Challenges to Evolutionary Computing
 – Better scaling
 – Automated programming,
 – Evolving artificial intelligence
 – Landscape analysis
 – Benchmarks
What is Genetic Improvement

• Application of evolutionary computation (often genetic programming) to existing software.
• Real programs (10^4 to 10^6 of lines of code)
• Key advantages
 – We know if mutated code is better/worse
 – Compare with original (hand made) code
 – Use existing software to create mutation
 – Small changes: delta debugging, incremental compilation, user acceptance
GI Evolving Patches

W. B. Langdon, UCL
Recent Successes of Genetic Improvement

- **Automatic bug repair**
 - *GenProg*, e.g. 105 bugs fix most (multiple best papers, IFIP TC2 Manfred Paul Award, 2 Humies)

- **Better programs**
 - 70x *Bowtie2*, *BarraCUDA*, *pknots* 10000x
 - Less *energy*, less *memory*
 - MOGA speed v. quality, e.g. [SIGGRAPH]

- **Code transplant** [Marginean, e.g. best paper ISSTA 2015]
 - E.g. C++, code indent, call graph layout into *Kate* editor (we *can* evolve an editor)
Evolution and Human Programmers

• EC and human
 – Grow and Graft GP, e.g. bi-translation for Pidgin
• Evolution to suggest new code to human
 – User in control
 – Less skilled (user) programmer, e.g. Flash fill.
 – Reject and/or re-code solution suggested by evolution
 – Evolution as code invention machine
• Sematic search
 “google” for code to do X, automate insertion [ASE2015]
Need for Improved Scaling

- Bugzilla 300+ bug reports per day [FSE-2009]
- Crowd source (volunteers)
 - Do we have that many programmers. Should we use people to do it. Do we trust them
 - Machine to generate 300 fixes per day?
Challenges to Evolutionary Computation
Challenges: Better Scaling

- Multiple aspects to better scaling
- Tackle bigger problems, rather than solving existing problems faster.
- EC well poised to exploit parallel hardware
 What of programming in parallel, eg crowd
- Hybridise EC with other techniques
 - Test generation
 - Using source code allows GI to be mixed with many existing software engineering tools?
 - Program validation, SAT solvers
Automated Programming

• Research on Evolutionary Computing started at the start of Artificial Intelligence.
• Given recent success of AI (driving cars) does EC need to redouble its efforts in AI?
• Does recent success of Genetic Improvement suggest a EC route to automated programming?
• Or should GI only move humans up a level from source code to saying what programs should do, not how to do it?
Evolving Artificial Intelligence

• Is it as far away as it seems?
• Raj Reddy 1988 AAAI Presidential Address
 – Chess, speech, vision, expert systems, accident avoiding car, math discovery (EC discovering quantum computing algorithms), theorem proving, motor processes (EC humanoid robotics), translating telephone
 – Excluding self-replicating systems, in 28 years considerable progress on all areas.
Evolving Artificial Intelligence

- Is it as far away as it seems?
- Huge stockpiles of source code free for use
- Huge (parallel) computation available.
- The DARPA Grand Challenge autonomous vehicles, something similar for EC-AI? Not an AI but a step (a jump)
Fitness Landscape Analysis
C++ is not fragile
Trading performance v speed

10000 random mutation runs GISMO bowtie2, WBL 3 May 2012
Program Mutation Landscape

- Not as hard as often claimed
- Triangle Program benchmark
- EC researcher already have many fitness landscape analysis tools. Can they be applied to searching real programs?
Benchmarks

• Bugs to be fixed
 – GenProg http://dijkstra.cs.virginia.edu/genprog/

• Software Engineering
 Many, e.g. SIR http://sir.unl.edu

• Fitness landscape
 Mutation testing/GA fitness landscape for the Triangle Program, UCL CS RN/16/05
 http://www.cs.ucl.ac.uk/staff/W.Langdon/ppsn2016/triangle/
Conclusions

• Recent successes of Genetic Improvement
• Challenges to Evolutionary Computing
 Better scaling: to tackle bigger problems
 Automated programming: GI as aid to user
 Evolving Artificial Intelligence: is it so far away
 Landscape analysis: C++ is not fragile
 Benchmarks: GenProg and Triangle Program

• EC as 2nd best. Red Queen. White Queen.
 Do the impossible
END
Genetic Improvement

W. B. Langdon
CREST
Department of Computer Science
http://www.cs.bham.ac.uk/~wbl/biblio/

1138 references

RSS Support available through the Collection of CS Bibliographies. XML RSS

A web form for adding your entries. Co-authorship community. Downloads

A personalised list of every author’s GP publications.

blog

Google scholar citations

Search the GP Bibliography at http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html