Benchmarking Genetically Improved BarraCUDA on Epigenetic Methylation data and nVidia GPUs

WB Langdon A Vilella* BYH Lam[†] J Petke M Harman

University College London.

*Cambridge Epigenetix. †Addenbrooke's Hospital, Cambridge UK

CREST

WIKIPEDIA Genetic Improvement

<u>GI 2016</u> workshop at GECCO 2016 Denver, USA, Wednesday 20th July

Genetic Improvement of Programs

Background

CREST

- What is BarraCUDA
- Why interest in GPUs

- DNA sequences & Epigenetic Methylation
- How BarraCUDA was Gled
- Results
 - 100× speedup. GCAT benchmark (arXiv.org)
 - 1st GI in use.
 - Over 1000 sourceforge downloads in first year.
 - Commercial use by <u>Lab7</u> (in BioBuilds since <u>Nov2015</u>) and IBM Power8.
 - Microsoft trialing BarraCUDA on Azure GPU cloud

What is BarraCUDA

- BarraCUDA is a Bioinformatics program to do approximate string matching.
- It aligns short noisy DNA sequences against a reference genome. Eg to say which human gene gave the sequence.
- Problems
 - Noise/real mutations: generate data 30x times
 - Genomes repetitive, no unique match: paired ends
 - Data volume (billions of sequences): parallel

What is BarraCUDA

- BarraCUDA manual port of BWA to run BWA's search algorithm in parallel on nVidia GPUs
- Last year it was genetically improved.
- The GI version has been available for 16months. Down loaded 1,877
- Tuned for short next generation DNA sequences.
- Here used for epigenetics data

What is BarraCUDA

DNA analysis program

- 8000 lines C code, SourceForge.
- Rewrite of BWA for nVidia CUDA

Why interest in GPUs

- From 1960 to 2005 CPU clock doubled in speed every 18 months (10⁹ increase in a life time)
- If trend had continued, laptop 400Ghz.
- It has not happened. It will not happen.
- But Moore's law has continued. Doubling of transistors per chip has continued.
- Extra transistors have gone into parallel operations.
- Future is parallel

Why interest in GPUs

Data from nVidia

Graphics Cards

Next Generation DNA Sequences

- NGS sequencing machines use four fluorescent dyes (one per DNA base) to read sequences of DNA bases.
- Very fast, billion sequences per day
- Noise. Four colours mix. Typically worse at end of sequence.
- Paired end to cope with short repeating sequences in human genome. Long (1500bp) molecule but only sequence ends (eg 100bp)

Epigenetic Methylation of DNA

- In Nature smallest base C can have addition methyl group CH₃ attached C*. Common in human. Still active research.
- Methylated DNA continues to "work" but CH₃ may disable some gene expression
- Chemistry to differentiate C/C* gives DNA sequences readable by NGS machines
- But software changes

BarraCUDA for Epigenetic DNA

- Human genome 3.2 billion DNA bases. BWA/BarraCUDA compress reference genome into <4GBytes.
- Until recently largest GPUs had 4GB.So ok
- Epigenetics reference genome approx twice as big. Effectively storing twice, once for C and once for C*. (Could be better?)
- GPU needs >6GB. So epigenetics on Titan and K40/K80 (etc.)

BarraCUDA for Epigenetic DNA

Released version of BarrCUDA

CREST

• Epigenetic even noisier. "R2" strand noisier than "R1", so slowing BarraCUDA.

BarraCUDA for Epigenetic DNA

Fraction not sampe mapped wlangdon/cegx/data

-n switch used to overcome noise.Plot –n from 0 to 150-n 7 recommended

CREST

Both *aln* and *sampe* can be run in parallel using CPU and two GPUs

How BarraCUDA was GI ed

BarraCUDA 0.7.107

Manual host changes to call exact_match kernel GI parameter and code changes on GPU

15

Why 1000 Genomes Project ?

- Data typical of modern large scale DNA mapping projects.
- Flagship bioinformatics project

 Project mapped all human mutations.
- 604 billion short human DNA sequences.
- Download raw data via FTP

\$120million 180Terra Bytes

Preparing for Evolution

- Re-enable exact matches code
- Support 15 options(conditional compilation)
- GP fitness testing framework
 - Generate and compile 1000 unique mutants
 - Whole population in one source file
 - Remove mutants who fail to compile and then re-run compiler to compile the others
 - Run and measure speed of 1000 kernels
 - Reset GPU following run time errors
 - For each kernel check 159444 answers

Parameter		default	Lines of code affected
BLOCK_W	int	64	all
cache_threads	"" int	££ 33	44
kl_par	binary	off	19
occ_par	binary	off	76
many_blocks	binary	off	2
direct_sequence	binary	on	63
direct_index	binary	on	6
sequence_global	binary	on	16
sequence_shift81	binary	on	30
sequence_stride	binary	on	14
mycache4	binary	on	12
mycache2	binary	off	11
direct_global_bwt	binary	off	2
cache_global_bwt	binary	on	65
scache_global_bwt	binary	off	35

Evolving BarraCUDA kernel

- Convert manual CUDA code into grammar
- Grammar used to control code modification
- GP manipulates patches and fixed params
 - Small movement/deletion of existing code
 - New program source is syntactically correct
 - Automatic scoping rules ensure almost all mutants compile
 - Force loop termination
- GP continues despite compilation and runtime errors

Evolving BarraCUDA

51 gens in 11 hours

Justyna Petke, UCL

```
CREST BRF Grammar
if (*lastpos!=pos_shifted)
{
    #ifndef sequence_global
    *data = tmp = tex1Dfetch(sequences_array, pos_shifted);
#else
    *data = tmp = Global_sequences(global_sequences,pos_shifted);
#endif /*sequence_global*/
    *lastpos=pos_shifted;
}
CUDA lines 119-127
```

```
<119> ::= " if" <IF_119> " \n"
<IF_119>::= " (*lastpos!=pos_shifted)"
<120> ::= "{\n"
<121> ::= "#ifndef sequence_global\n"
<122> ::= "" <_122> "\n"
<_122> ::= "*data = tmp = tex1Dfetch(sequences_array, pos_shifted);"
<123> ::= "#else\n"
<124> ::= "" <_124> "\n"
<_124> ::= "" <_124> "\n"
<_125> ::= "#endif\n"
<126> ::= "#endif\n"
<126> ::= "*lastpos=pos_shifted;"
<127> ::= "}\n"
```

Fragment of Grammar (Total 773 rules)

9 Types of grammar rule

- Type indicated by rule name
- Replace rule only by another of same type
- 650 fixed, 115 variable.
- 43 statement (e.g. assignment, Not declaration)
- 24 IF
- <_392> ::= " if" <IF_392> " {\n"
- <IF_392> ::= " (par==0)"

• Seven for loops (for1, for2, for3)

- <_630> ::= <okdeclaration_> <pragma_630>
 "for(" <for1_630> ";" "OK()&&" <for2_630> ";" <for3_630> ") \n"
- 2 ELSE
- 29 CUDA specials

Representation

- 15 fixed parameters; variable length list of grammar patches.
 - no size limit, so search space is infinite
- tree like 2pt crossover.
- mutation flips one bit/int or adds one randomly chosen grammar change
- 3 possible grammar changes:
 - Delete line of source code (or replace by "", 0)
 - Replace with line of GPU code (same type)
 - Insert a copy of another line of kernel code

Example Mutating Grammar

```
<_947> ::= "*k0 = k;"
<_929> ::= "((int*)10)[1] =
__shfl(((int*)&l)[1],threads_per_sequence/2,threads_per_sequence);
"
```

2 lines from grammar

<_947>+<_929>

Recap

- Representation
 - 15 fixed genes (mix of Boolean and integer)
 - List of changes (delete, replace, insert).
 New rule must be of same type.
 - no size limit, so search space is infinite
- Mutation
 - 1 bit flip or small/large change to int
 - append one random change to code
- Crossover
 - Uniform GA crossover
 - GP tree like 2pt crossover

Best K20 GPU Patch in gen 50

		new	_Store bwt cache in registers
scache_global_bwt	off	on -	Llog O threads to logd burt soch o
cache_threads	off	2~	> Use 2 threads to load bwt cache
BLOCK_W	64	128-	Double number of threads

line	Original Code	New Code
635		#pragma unroll
578	if(k == bwt_cuda.seq_len)	if(0)
947	*k0 = k;	<pre>((int*)10)[1] =shfl(((int*)&l)[1],thre ads_per_sequence/2,thread s_per_sequence);*k0 = k;</pre>
126	*lastpos=pos shifted;	

Line 578 if was never true

10 is overwritten later regardless

Change 126 disables small sequence cache 3% faster

Results

- Ten randomly chosen 100 base pair datasets from 1000 genomes project:
 - K20 1 840 000 DNA sequences/second (original 15000)
 - K40 2 330 000 DNA sequences/second (original 16 000)
- 100% identical
- manually incorporated into sourceForge
- 1219 downloads (11 months)

WikipediA

Genetic Improvement

Humies: Human-Competitive Cash prizes Friday July 22 14:00-15:40

Justyna Petke, UCL

Conclusions

- Genetic programming can automatically engineer small programs
 - hash algorithms
 - random numbers which take less power, etc.
- Fix bugs (>10⁶ lines of code, 16 programs)
 - auto-port (gzip to GPU). Merge programs (miniSAT Humie)
 - new code to extend application (gggp babel pidgin)
 - code transplant
 - speed up 50000 lines of code
- On real data speed up can be >3×
- use £50 to \$325 million
- Software is not fragile
 - -break it, bend it, Evolve it

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/

http://www.epsrc.ac.uk/ EPSRC

Justyna Petke, UCL

Genetic Improvement

CREST Department of Computer Science

KLOWER ACADEMIC PUBLISHERS

Riccardo Poli William B. Langdon Nicholas F. McPhee

> with contributions by John R. Koza

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

11021 references

RSS Support available through the Collection of CS Bibliographies.

A web form for adding your entries. Co-authorship community. Downloads

CREST

A personalised list of every author's GP publications.

blog

Google scholar citations

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

