
Benchmarking Genetically Improved BarraCUDA

on Epigenetic Methylation data and nVidia GPUs

WB Langdon A Vilella⋆ BYH Lam† J Petke M Harman

University College London.
⋆Cambridge Epigenetix. †Addenbrooke’s Hospital, Cambridge UK

2.8.2016

GI 2016 workshop at GECCO 2016

Denver, USA, Wednesday 20th July

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://scholar.google.com/citations?user=tSLOiSEAAAAJ
http://www.neuroscience.cam.ac.uk/directory/profile.php?blam
http://www.cs.ucl.ac.uk/staff/J.Petke/
http://www.cs.ucl.ac.uk/staff/M.Harman/
http://www.cs.ucl.ac.uk/staff/M.Harman/
http://geneticimprovementofsoftware.com/
http://geneticimprovementofsoftware.com/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)

Genetic Improvement of Programs

• Background

– What is BarraCUDA

– Why interest in GPUs

– DNA sequences & Epigenetic Methylation

– How BarraCUDA was GIed

• Results

– 100× speedup. GCAT benchmark (arXiv.org)

– 1st GI in use.

• Over 1000 sourceforge downloads in first year.

• Commercial use by Lab7 (in BioBuilds since

Nov2015) and IBM Power8.

• Microsoft trialing BarraCUDA on Azure GPU cloud

http://seqbarracuda.sourceforge.net/
http://arxiv.org/abs/1505.07855
https://www.lab7.io/
https://biobuilds.org/tools-in-biobuilds/biobuilds-2015-11/

What is BarraCUDA

• BarraCUDA is a Bioinformatics program to do

approximate string matching.

• It aligns short noisy DNA sequences against a

reference genome. Eg to say which human

gene gave the sequence.

• Problems

– Noise/real mutations: generate data 30x times

– Genomes repetitive, no unique match: paired ends

– Data volume (billions of sequences): parallel

3

What is BarraCUDA

• BarraCUDA manual port of BWA to run

BWA’s search algorithm in parallel on

nVidia GPUs

• Last year it was genetically improved.

• The GI version has been available for

16months. Down loaded 1,877

• Tuned for short next generation DNA

sequences.

• Here used for epigenetics data

4

DNA analysis program

• 8000 lines C code, SourceForge.

• Rewrite of BWA for nVidia CUDA

What is BarraCUDA

5

Speed comes from

processing 159,744

strings in parallel on GPU

Why interest in GPUs
• From 1960 to 2005 CPU clock doubled in

speed every 18 months

(109 increase in a life time)

• If trend had continued, laptop 400Ghz.

• It has not happened. It will not happen.

• But Moore’s law has continued. Doubling

of transistors per chip has continued.

• Extra transistors have gone into parallel

operations.

• Future is parallel
6

Why interest in GPUs

7

Data from nVidia

Graphics Cards

8

£53.85

Next Generation DNA Sequences

• NGS sequencing machines use four

fluorescent dyes (one per DNA base) to

read sequences of DNA bases.

• Very fast, billion sequences per day

• Noise. Four colours mix. Typically worse at

end of sequence.

• Paired end to cope with short repeating

sequences in human genome. Long

(1500bp) molecule but only sequence ends

(eg 100bp)
9

Epigenetic Methylation of DNA

• In Nature smallest base C can have

addition methyl group CH3 attached C*.

Common in human. Still active research.

• Methylated DNA continues to “work” but

CH3 may disable some gene expression

• Chemistry to differentiate C/C* gives DNA

sequences readable by NGS machines

• But software changes

10 Justyna Petke, UCL

BarraCUDA for Epigenetic DNA

• Human genome 3.2 billion DNA bases.

BWA/BarraCUDA compress reference

genome into <4GBytes.

• Until recently largest GPUs had 4GB.So ok

• Epigenetics reference genome approx

twice as big. Effectively storing twice, once

for C and once for C*. (Could be better?)

• GPU needs >6GB. So epigenetics on

Titan and K40/K80 (etc.)

11 Justyna Petke, UCL

BarraCUDA for Epigenetic DNA

• Released version of BarrCUDA

• Epigenetic even noisier. “R2” strand noisier

than “R1”, so slowing BarraCUDA.

12 Justyna Petke, UCL

BarraCUDA for Epigenetic DNA

-n switch used to overcome noise.

Plot –n from 0 to 150

-n 7 recommended

Both aln and sampe can be

run in parallel using CPU and

two GPUs

How BarraCUDA was GI ed

14 Justyna Petke, UCL

Manual host changes to call exact_match kernel

GI parameter and code changes on GPU

BarraCUDA 0.7.107

15

Why 1000 Genomes Project ?

• Data typical of modern large scale DNA

mapping projects.

• Flagship bioinformatics project

– Project mapped all human mutations.

• 604 billion short human DNA sequences.

• Download raw data via FTP

16

$120million 180Terra Bytes

http://www.biodatamining.org/content/7/1/3

Preparing for Evolution

• Re-enable exact matches code

• Support 15 options(conditional compilation)

• GP fitness testing framework

– Generate and compile 1000 unique mutants

• Whole population in one source file

• Remove mutants who fail to compile and then

re-run compiler to compile the others

– Run and measure speed of 1000 kernels

• Reset GPU following run time errors

– For each kernel check 159444 answers

17

Parameter default Lines of code

affected

BLOCK_W int 64 all

cache_threads “” int “” 44

kl_par binary off 19

occ_par binary off 76

many_blocks binary off 2

direct_sequence binary on 63

direct_index binary on 6

sequence_global binary on 16

sequence_shift81 binary on 30

sequence_stride binary on 14

mycache4 binary on 12

mycache2 binary off 11

direct_global_bwt binary off 2

cache_global_bwt binary on 65

scache_global_bwt binary off 35

Evolving BarraCUDA kernel

• Convert manual CUDA code into grammar

• Grammar used to control code modification

• GP manipulates patches and fixed params

• Small movement/deletion of existing code

• New program source is syntactically correct

• Automatic scoping rules ensure almost all

mutants compile

• Force loop termination

• GP continues despite compilation and

runtime errors

19

Evolving BarraCUDA

Justyna Petke, UCL 20
51 gens in 11 hours

<119> ::= " if" <IF_119> " \n"

<IF_119>::= "(*lastpos!=pos_shifted)"

<120> ::= "{\n"

<121> ::= "#ifndef sequence_global\n"

<122> ::= "" <_122> "\n"

<_122> ::= "*data = tmp = tex1Dfetch(sequences_array, pos_shifted);"

<123> ::= "#else\n"

<124> ::= "" <_124> "\n"

<_124> ::= "*data = tmp = Global_sequences(global_sequences,pos_shifted);"

<125> ::= "#endif\n"

<126> ::= "" <_126> "\n"

<_126> ::= "*lastpos=pos_shifted;"

<127> ::= "}\n"

BNF Grammar
if (*lastpos!=pos_shifted)

{

#ifndef sequence_global

 *data = tmp = tex1Dfetch(sequences_array, pos_shifted);

#else

 *data = tmp = Global_sequences(global_sequences,pos_shifted);

#endif /*sequence_global*/

 *lastpos=pos_shifted;

} CUDA lines 119-127

Fragment of Grammar (Total 773 rules)

Configuration

parameter

9 Types of grammar rule
• Type indicated by rule name

• Replace rule only by another of same type

• 650 fixed, 115 variable.

• 43 statement (e.g. assignment, Not declaration)

• 24 IF
• <_392> ::= " if" <IF_392> " {\n"

• <IF_392> ::= " (par==0)"

• Seven for loops (for1, for2, for3)
• <_630> ::= <okdeclaration_> <pragma_630>

"for(" <for1_630> ";" "OK()&&" <for2_630> ";" <for3_630> ") \n"

• 2 ELSE

• 29 CUDA specials

22

Representation
• 15 fixed parameters; variable length list of

grammar patches.

• no size limit, so search space is infinite

• tree like 2pt crossover.

• mutation flips one bit/int or adds one randomly

chosen grammar change

• 3 possible grammar changes:

• Delete line of source code (or replace by “”, 0)

• Replace with line of GPU code (same type)

• Insert a copy of another line of kernel code

23 Justyna Petke, UCL

Example Mutating Grammar

<_947> ::= "*k0 = k;"

<_929> ::= "((int*)l0)[1] =

__shfl(((int*)&l)[1],threads_per_sequence/2,threads_per_sequence);

"

2 lines from grammar

<_947>+<_929>

Fragment of list of mutations

Says insert copy of line 929 before line 947

((int*)l0)[1] =

__shfl(((int*)&l)[1],threads_per_sequence/2,threads_per_sequence);

*k0 = k;

New code

Justyna Petke, UCL 24

Line 947

Copy of line 929

Recap

• Representation

– 15 fixed genes (mix of Boolean and integer)

– List of changes (delete, replace, insert).

New rule must be of same type.

• no size limit, so search space is infinite

• Mutation

– 1 bit flip or small/large change to int

– append one random change to code

• Crossover

– Uniform GA crossover

– GP tree like 2pt crossover 25

line Original Code New Code

635 #pragma unroll

578 if(k == bwt_cuda.seq_len) if(0)

947 *k0 = k; ((int*)l0)[1] =

__shfl(((int*)&l)[1],thre

ads_per_sequence/2,thread

s_per_sequence);*k0 = k;

126 *lastpos=pos_shifted;

Best K20 GPU Patch in gen 50
new

scache_global_bwt off on

cache_threads off 2

BLOCK_W 64 128

Line 578 if was never true

l0 is overwritten later regardless

Change 126 disables small sequence cache 3% faster

Store bwt cache in registers

Use 2 threads to load bwt cache

Double number of threads

Results

• Ten randomly chosen 100 base pair

datasets from 1000 genomes project:

– K20 1 840 000 DNA sequences/second

(original 15000)

– K40 2 330 000 DNA sequences/second

(original 16 000)

• 100% identical

• manually incorporated into sourceForge

• 1219 downloads (11 months)

27 Justyna Petke, UCL

Justyna Petke, UCL http://www.epsrc.ac.uk/

Humies: Human-Competitive

Cash prizes

Friday July 22 14:00-15:40

28

http://www.epsrc.ac.uk/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.genetic-programming.org/combined.php

Conclusions
• Genetic programming can automatically

engineer small programs
• hash algorithms

• random numbers which take less power, etc.

• Fix bugs (>106 lines of code, 16 programs)
• auto-port (gzip to GPU). Merge programs (miniSAT Humie)

• new code to extend application (gggp babel pidgin)

• code transplant

• speed up 50000 lines of code

• On real data speed up can be >3×

• use £50 to $325 million

• Software is not fragile

– break it, bend it, Evolve it

http://www.genetic-programming.org/combined.php#humie_year_2014
http://www.genetic-programming.org/combined.php#humie_year_2014

Justyna Petke, UCL 30 30

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Improvement

W. B. Langdon

CREST

Department of Computer Science

31

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

11021 references

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

blog

Google scholar citations

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.bham.ac.uk/~wbl/biblio/blog.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-coauthors/index.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/index.html
http://www.cs.bham.ac.uk/~wbl/biblio/top_cites.html
http://www.cs.bham.ac.uk/~wbl/biblio/top_users.html

