Truss Optimisation in Grammatical Evolution

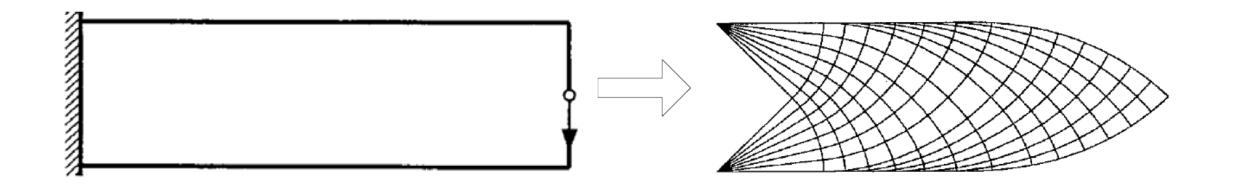
Dr. Michael Fenton

Michael.Fenton@ucd.ie

Housekeeping: What is a truss?

Why is this important?

- Eiffel Tower
 - 7,300 tons
 - Wrought Iron
 - 10% weight saving = 730 tons
- Savings "snowball" and scale down through entire structure
 - Lighter structure needs less support, etc.



Why Human-Competitive?

Theoretical Limitations

• Michell, A.G.M., 1904. LVIII. The limits of economy of material in frame-structures. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 8(47), pp.589-597.

Traditional Ground Structure

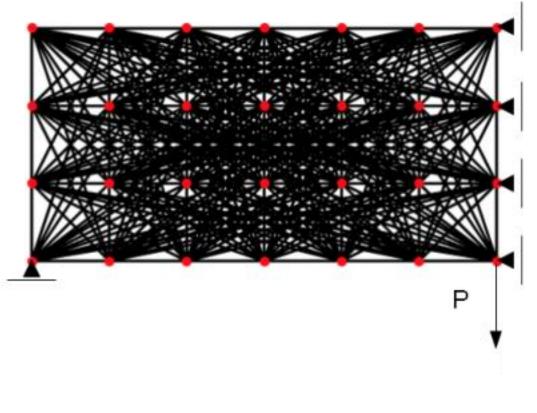
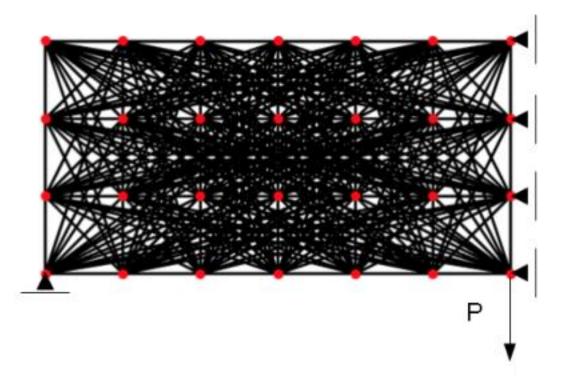
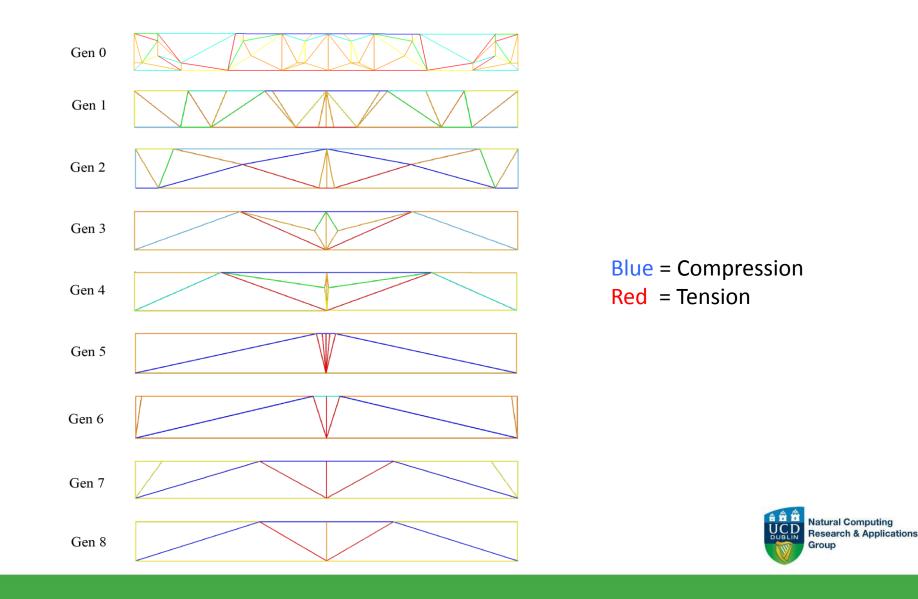



Image credit: [4]


Traditional Ground Structure

Nodes	= n
Connections	c = ((n-1)n)/2
Permutations	= tetrahedral number + number of connections
	= ((c-1)*c*(c+1))/6 + c
	~ O(n ⁶)

SEOIGE [2]

SEOIGE [2]

Recursive node-based grammar:

```
a ::= [<nodes>]
<nodes> ::= <node> | <node>,<nodes>
<node> ::= [<%>, <%>]
<%> ::= <n><n>.<n><n><
    ::= 0|1|2|3|4|5|6|7|8|9</pre>
```

• **10**^{8*(d-2)} unique solutions at depth d

Why Best HUMIES Entrant?

Why Best HUMIES Entrant?

- The methods described in paper [2] represent an entirely new way to generate truss structures, previously unseen in the literature.
- Intelligent, lightweight representation.
 - Use of triangulation: all generated solutions are kinematically stable, and as such are structurally viable (constraints notwithstanding).
- Pinnacle of engineering optimisation after over 100 years of research in the field.
- Real-world application with commercial appeal.
 - Designed with this in mind.
 - Real-world materials and constraints.

Sustainable Development

- Minimizing material usage has a number of benefits:
 - Immediate cost benefit.
 - "Snowball" effect of weight reduction over entire structure.
 - Material minimisation: effect on supply and demand.
 - With an average estimate of 2 tons of CO2 being emitted for every 1 ton of steel produced [5], any reduction in production has significant environmental implications.

Acknowledgements

This research is based upon works supported by Science Foundation Ireland under grant 13/IA/1850.

References

- 1. Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J. and O'Neill, M., 2014. Automatic innovative truss design using grammatical evolution. *Automation in Construction*, 39, pp.59-69.
- 2. Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J. and O'Neill, M., 2016. Discrete planar truss optimization by node position variation using grammatical evolution. *IEEE Transactions on Evolutionary Computation*, 20(4), pp.577-589.
- 3. Michell, A.G.M., 1904. LVIII. The limits of economy of material in frame-structures. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 8(47), pp.589-597.
- 4. Torii, A.J., Lopez, R.H. and Miguel, L.F., 2016. Design complexity control in truss optimization. *Structural and Multidisciplinary Optimization*, 2(54), pp.289-299.
- 5. Global CCS Institute, 2013. CCS for iron and steel production. Available online at: https://www.globalccsinstitute.com/insights/authors/dennisvanpuyvelde/2013/08/23/ ccs-iron-and-steel-production

