Word Count

as a Traditional Programming Benchmark
Problem for Genetic Programming

Tom Helmuth and Lee Spector

Traditional Programming

Problems in GP

e Mimic human programming

e Large instruction set

o multiple data types
o control flow
o |/O

e Based on tests
o input/output example behavior

Traditional Programming

Problems in GP

e Need benchmark problems!
o interest shown in community survey’
o but, none recommended in survey paper

e \Word count problem

'D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman, G. Kronberger, W. Jaskowski, U.-M.
O'Reilly, and S. Luke. Better GP benchmarks: community survey results and proposals. Genetic
Programming and Evolvable Machines, 14(1):3-29, Mar. 2013.

Statistics:

% This is "sig-alternate.tex" V2.0 May 2012
% This file should be compiled with V2.5 of "sig-alte Pages

% Words
% This example file demonstrates the use of the 'sig-a Characters (no spaces)

@ V2é LaTsze d%gmgnt gla§s ﬁlc. It iS for t.hose Sl Characters (with spaces)
% articles to ACM Conference Proceedings WHO DC Paragraphs

% STRICTLY ADHERE TO THE SIGS (PUBS-BO/ Lines

% The 'sig-alternate cls' file will produce a similar-loc
% albeit, 'tighter' paper resulting in, invariably, fewer
%
%
% This .tex file (and associated .cls V2.5) produces:
% 1) The Permission Statement

% 2) The Conference (location) Info information
% 3) The Copyright Line with ACM data

% 4) NO page numbers

%

@ Include footnotes and endnotes

Lok |

% as against the acm_proc_article-sp.cls file which
% DOES NOT produce 1) thru' 3) above.
%

% Using 'sig-alternate.cls' you have control, however, from within
% the source .tex file, over both the CopyrightYear

Unix Command wc

® OO (] WC — bash — 80x40
WC $Swc wc.tex
449 8105 55491 wc.tex

WwC $

Unix Command wc

® 00 (] WC — bash — 80x40
WC Swec wc.tex
449 8105 55491 wc.tex

WC $

newlines
words

characters

Why wc Makes An Interesting

Traditional Programming Problem

Requires multiple data types
mitates real program

Difficult but reasonably fast

Open source, easy to implement
Generalization to unseen test cases

Generate wc Problem Instance:

Test Cases

e (O to 100 character files
e Random string
o 200 training set -- 500 test set

e Random string ending in newline
o 20 training set -- 50 test set

e Edge cases
o 22 training set
o examples: ™, “A”, “\n”, “\n” repeated for 100 chars

Example Experiment

e Compare parent selection techniques
o lexicase selection
o tournament selection
o implicit fitness sharing selection

Lexicase Parent Selection

e Emphasizes individual test cases
o not aggregated fithess across test cases

e Uses random ordering of test cases for each
selection event

e Unlike in Pareto selection, some test cases
provide more selection pressure than others

Lexicase — Pseudocode

To select single parent:

1. Shuffle test cases

2. First test case — keep best individuals

3. Repeat with next test case, etc.
a. Until one individual remains

Push and PushGP

e Push - Stack-based language for GP
e Arguments and results from typed stacks
e EXxecuting code also on stack

e PushGP - Mostly typical GP using Push
http://pushlanguage.org

file_readchar, file_readline, file_-
EOF, file_begin

output_charcount, output_wordcount,
output_linecount

exec_pop, exec_swap, exec_rot,
exec_dup, exec_yank, exec_yankdup,
exec_shove, exec_eq, exec_stack-
depth, exec_when, exec_if, exec_-
do*times, exec_do*count, exec_-
do*range, exec_y, exec_k, exec_s

tag_exec, tag_integer, tag_string,
tagged

string_split, string_parse_to_chars,
string_whitespace, string_contained,
string_reverse, string_concat,
string_take, string_pop, string -
eq, string_stackdepth, string_rot,
string_yank, string_swap, string -
yankdup, string_flush, string -
length, string_shove, string_dup

integer_add, integer_swap, integer_-
yank, integer_dup, integer_yankdup,
integer_shove, integer_mult, inte-
ger_div, integer_max, integer_sub,
integer_mod, integer_rot, integer_-
min, integer_inc, integer_dec

boolean_swap, boolean_and, boolean_-
not, boolean_or, boolean_frominte-
ger, boolean_stackdepth, boolean_dup

e General purpose:
o |/O
o control flow
o tags for modularity T
o string, integer, and boolean
o random constants

Integer from [-100, 100]
{u\nu, "\t", ||u|r }

{z|z is a non-whitespace character}

PushGP Parameters

Runs Per Condition
Fitness Evaluations Budget
Population Size

Max Generations

Max Program Size

Max Initial Program Size
Max Node Evaluations
Genetic Operator

ULTRA Mutation Rate
ULTRA Alternation Rate
ULTRA Alignment Deviation

200
72,600,000
1000

300

1000

400

2000
ULTRA (100%)
0.01

0.01

10

Performance Metrics for

Traditional Programming Problems

e \When comparing sets of runs, don’t use
mean best fithess
o don’t care about incremental improvements of GP

e Care about perfect solutions
o must pass training and unseen test sets

e Compare success rates

Success Rates

e Fisher’s exact test for significance
e Confidence intervals on difference

Tournament Successes

Selection Size (200 runs)
Lexicase - 1
Tournament 3 0
5 0
7 0
Implicit Fitness 3 0
Sharing 5 0
7 0

e 95% confidence interval: [0.020, 0.088]
e Small but meaningful differences

Conclusions

e More traditional programming in GP!
o problems/benchmarks
o Wwc problem good starting point
o applications

e Lexicase selection

Acknowledgments: This material is based upon work supported by the National Science Foundation under Grants No. 1017817
and 1129139. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

