
Chapter 11, in Genetic Programming Theory and Practise, Rick L. Riolo and Bill Worzel

(editors), pp173-188, Kluwer, 2003.

Chapter 11

THE DISTRIBUTION OF
REVERSIBLE FUNCTIONS IS NORMAL

W. B. Langdon
W.Langdon@cs.uc1.ac.uk

Computer Science, University College, London,
Gower Street, London, WC1E 6BT, UK

Abstract The distribution of reversible programs tends to a limit as their size
increases. For problems with a Hamming distance fitness function the
limiting distribution is binomial with an exponentially small chance (but
non zero) chance of perfect solution. Sufficiently good reversible circuits
are more common. Expected RMS error is also calculated. Random
unitary matrices may suggest possible extension to quantum computing.
Using the genetic programming (GP) benchmark, the six multiplexor,
circuits of Toffoli gates are shown to give a fitness landscape amenable to
evolutionary search. Minimal CCNOT solutions to the six multiplexer
are found but larger circuits are more evolvable.

Keywords: fitness landscape, evolutionary computation, genetic algorithms, genetic
programming, quantum computing, CCNOT, Toffoli, low power con-
sumption

1. Introduction
We shall show the fitness of classical reversible computing programs

[Bennett and Landauer, 1985] (where fitness is given by Hamming dis-
tance from an ideal answer) is Normally distributed. If the score is
normalised so that the maximum score (fitness) is 1 and the minimum
is 0, then the mean is 0.5 and the standard deviation is 1/2 m−1/22−

n
2 .

(Where n is the number of input bits and m is the number of output
bits.)

Almost all genetic programming has used traditional computing in-
structions, such as add, subtract, multiple, or, and. These instruction

1

sets are not reversible. I.e., in general, it is impossible given a program
and its output, to unambiguously reconstruct the program’s input. This
is because most of the primitive operations themselves are irreversible.
However genetic programming can evolve reversible programs composed
of reversible primitives.

A number of reversible gates have been proposed [Toffoli, 1980, Fred-
kin and Toffoli, 1982] which can be connected in a linear sequence to
give a reversible gate array, which we will treat as a reversible computer
program. At present the driving force behind the interest in reversible
computing is the hope that reversible gates can be implemented as quan-
tum gates, leading to quantum coherent circuits and quantum comput-
ing. Reversible computing has also been proposed for safety critical
applications and for low power consumption or low heat dissipation.

In the absence of counter measures, most traditional computer pro-
grams degrade information. I.e. knowledge about their inputs is progres-
sively lost as they are executed. This means, most programs produce
the same output regardless of their input [Langdon, 2002b]. Suppose a
program has n input bits and m output bits, there are 2m2n possible
functions it could implement. However a long program is almost certain
to implement one of the 2m constants. That is, the fraction of functions
actually implemented is tiny as the programs get longer and worse, the
fraction of interesting functions tends to zero. This is due to the inherent
irreversibility of traditional computing primitives.

In the next section we describe reversible computing in more detail.
In reversible computing there is also a distribution of functions which
programs tend to as they get longer. Instead of it being dominated by
constants, every reversible function is equally likely (cf. Section 11.3).
Convergence to this limit is tested in Section 11.5 on the Boolean 6 Mul-
tiplexor problem (described in Section 11.4). Section 11.5 shows conver-
gence to the large program limit can be rapid. Despite the low density of
solutions, evolutionary search is effective at finding them (Section 11.6).
Initial results suggest, CCNOT and traditional computing primitives are
similarly amenable to evolutionary search.

2. Reversible Computing Circuits
A reversible computer can be treated as an array of parallel wires lead-

ing from the inputs and constants to the outputs and garbage. In normal
operation the garbage outputs are treated as rubbish and discarded by
the end of the program.

Connected across the wires are reversible gates. Each gate has as
many inputs as it has outputs. The gates are reversible, in the sense

The Distribution of Reversible Functions is Normal 3

Inputs

constant inputs

Outputs

Garbage
(scratch memory)

3 input
reversible

5 input

gate

reversible

gate

Figure 11.1. Schematic of reversible computer. In normal operation data flows from
left to right. However when reversed, garbage and outputs are fed into the circuit
from the right to give the original inputs to the program (plus constants).

not
swap

OutputsInputs C C

B

A xor (B.C)

B

A
CCNOT

Figure 11.2. Examples of reversible gates. The CCNOT (Toffoli) gate passes all of
its inputs directly to its outputs, unless all of the control lines (B and C) are true, in
which case it inverts its main data line (A). (The control inputs of a CCNOT gate
(B and C) can be connected to the same wire but the controlled wire (A) cannot be
directly connected to either control.) CCNOT is complete, in the sense all boolean
circuits can be constructed from it.

that it is possible to unambiguously identify their inputs given their
outputs (see Figure 11.1). The simplest reversible gate is the identity,
i.e. a direct connection from input to output. Also NOT is reversible,
since given its output we know what its input must have been. Similarly
a gate which swaps its inputs is also reversible (see Figure 11.2).

We will mainly be concerned with the controlled-controlled not (CC-
NOT, Toffoli) gate. Unless all of its control lines are true, the CCNOT
gate passes all of its inputs directly to its outputs. However if they are
all set, CCNOT inverts the controlled line. CCNOT is complete in the
sense, given sufficient CCNOT gates and additional constant inputs and
rubbish outputs, a reversible circuit equivalent to any Boolean function
from inputs to outputs (excluding constants and rubbish) can be con-
structed. Since CCNOT can invert 1, the additional inputs can all be 1.
Note a single CCNOT gate (plus a constant zero, e.g. provided by us-

4

ing another CCNOT gate to invert a one) can implement the identify
function. In C code data[A] = (data[C] & data[B]) ^ data[A];

While it is not necessary for the number of lines set to true, to remain
constant across the circuit from left to right, a reversible computer must
implement a permutation. To explain what we mean by this, consider
the left hand side (of N wires) as an N bit number. There are up to 2N

possible left hand patterns. Similarly there are up to 2N possible right
hand patterns. The computer provides a mapping from left hand number
to right hand number. For the mapping to be reversible, its range and
domain must be the same size and a number can only appear once on the
right hand side (range), i.e. the mapping must be a permutation. If all
2N possible numbers are used, only 2N ! of the 2N2N possible mappings
are reversible. For large N , this means only about 1 in e2N mappings
are permutations and hence are reversible.

The computation remains reversible up until the garbage bits are dis-
carded. It is at this point that information is lost. It is the deletion
of information which means the computation must consume energy and
release it as heat. By carefully controlling the deletion of these rubbish
bits, it has been suggested that reversible computers will require less en-
ergy than irreversible computers. Present day circuits do not approach
the lower bound on energy consumption suggested by their irreversibility.
I.e. they require much more energy to operate gates, drive connecting
wires, etc. than the theoretical bound on energy consumption due to
information lost as they run.

However in the near term, energy consumption is interesting both for
ultra-low power consumption, e.g. solar powered computing, and also
because the energy released inside the computing circuit has to be re-
moved as heat. The only way heat is removed at present is by making
the centre of the circuit hotter and allowing heat to diffuse down the
temperature gradient to the cooler boundaries of the circuit. (Active
heat pumps within the circuit have been considered. Electronic refrig-
erators could be based upon the Peltier electro thermodynamic effect).
Even today cooling circuits is a limiting factor on their operation. In-
creasing circuit clock speeds, despite continued reduction in circuit size,
mean heat removal will be an increasing concern.

[Bishop, 1997] describes a single channel reversible system for a safety
critical control application. By running the system forwards and then
backwards and comparing the original inputs with those returned by
traversing the system twice, he demonstrated the system was able to
detect test errors injected into the system during its operation. (High
reliability systems often use comparison between multiple channels to
detect errors.)

The Distribution of Reversible Functions is Normal 5

3. Distribution of Large Reversible Circuits
As with a complete reversible circuit, the action of a single reversible

gate across N wires can be treated as a permutation mapping one
N bit number to another. Following [Langdon and Poli, 2002],[Lang-
don, 2002a],[Langdon, 2002b], we can treat the sequence of permutations
from the start of the circuit to its end as a sequence of state transitions.
The state being the current permutation. We restrict ourselves to just
those permutations which can be implemented, i.e. states that can be
reached. Each gate changes the current permutation (state) to the next.
We can describe the action of a gate by a square matrix of zeros and
ones. Each row contains exactly one one. The position of the one indi-
cates the permutation on the output of the gate for each permutation
on the input side of the gate. (Note the matrix is row stochastic). Now
each gate is reversible. I.e. given a permutation on its output side, there
can only be one permutation on its input side. This means each column
of the matrix also contains exactly one one. (I.e. the matrix is column as
well as row stochastic, i.e. it is double stochastic). We will have multiple
ways of connecting our gates or even multiple types of gate, however
each matrix will be double stochastic and therefore so too will be the
average matrix. Since we only consider implementable permutations,
the average matrix is fully connected. If a single gate can implement the
identity function, the matrix must have a non zero diagonal element.
This suppresses cycling in the limit. If we choose gates at random, the
sequence of permutations is also random. Since the next permutation
depends only on the current permutation and the gate, the sequence of
permutations is a Markov process. The Markov transition matrix is the
average of each of the gate matrices, which is fully connected, acyclic
and double stochastic. This means as the number of randomly chosen
gates increases each of the Markov states becomes equally likely [Feller,
1957]. I.e. in the limit of large circuits each possible permutation is
equally likely.

When there are many randomly connected gates and the total number
of lines N is large, not only is each possible permutation equally likely
but (since our reversible gates are complete) all m bit output patterns
are possible. Further we will assume that we can treat each output
bit as being equally likely to be on as off and almost independent of
the others. If fitness f is defined by running the program on every
input (i.e. running it 2n times) and summing the number of output
bits that match a target (f = Hamming distance) then f follows the
Binomial distribution 2−m2nCm2n

f . This means most programs have a
fitness near the average 1

2m2n and the chance of finding a solution is

6

2−m2n . While small, this is finite, whereas with irreversible gates (and
no write protection of inputs) almost all programs do not solve any
non trivial problem [Langdon, 2002b].

We can also use the known uniform distribution to calculate
the expected RMS error. Suppose T of the 2n possible fitness
cases are run, the expected average squared error is
RMS = 1

k

∑k
i=1

√
1
T

∑T
t=1 |Pi(inputt + 2N − 2n) mod 2m −At)|2. Where

k is the total number of permutations, inputt is the input for the tth test,
At = required answer and Pi(x) is the ith permutation of x. As 2m � k
we can approximate the average behaviour of Pi(t+ 2N − 2n) mod 2m

over k cases by i over 2m cases. So the expected average squared error
is RMS = 1

2m
∑2m−1
i=0

√
1
T

∑T
t=1 |i−At|2. If only a few tests with small

values are run (i.e. T � 2m and At � 2m) then the expected root mean
squared error is bounded by

RMS ≈ 1
2m

2m−1∑
i=0

√√√√ 1
T

T∑
t=1

i2 ≈ 1
2

2m

VARRMS + RMS2 =
1

2m

2m−1∑
i=0

1
T

T∑
t=1

|i−At|2 ≈
1

2m

2m−1∑
i=0

i2 ≈ 1
3

(2m)2

VARRMS ≈ 1
3

(2m)2 − 1
4

(2m)2

SD ≈ 1
2
√

3
2m = 0.2886751 2m

On the other hand if exhaustive testing is carried out and the target
values are uniformly spread in the range 0 . . . 2m−1 then RMS ≈ 7

12
√

3
2m

and SD ≈ 0.23 2m.

4. 6 Multiplexor
The six multiplexor problem has often been used as a benchmark

problem. Briefly the problem is to find a circuit which has two control
lines (giving a total of four possible combinations) which are used to
switch the output of the circuit to one of the four input lines, cf. Fig-
ure 11.3. The fitness of a circuit is the number (0 . . . 64) of times the
actual output matches the output given by the truth table. Note fitness
is given by number of bits in common between the actual truth table
implemented by a program and a given truth table (Hamming distance).

The Distribution of Reversible Functions is Normal 7

A1

D0

D1

D2

D3

Output

A0
switch
4 way

Figure 11.3. Six way multiplexor. Only one of four data lines (D0, D1, D2 and D3)
is enabled. Which one is determined by the two control lines (A0 and A1).

5. Density of 6 Multiplexor Solutions
We measured1 the distribution of fitness of randomly chosen CCNOT

programs with 0, 1 and 6 additional wires at a variety of lengths, cf. Fig-
ures 11.4–11.10. These experiments confirm that there is a limiting fit-
ness distribution and it is Binomial. Further, cf. Figure 11.9, the differ-
ence between the actual distribution and the limiting distribution falls
rapidly with program length. Also we do not need many spare wires
(one is sufficient) to be close to the theoretical wide circuit limit. Only
without any spare lines does the limit differ from theory.

There are no CCNOT solutions to the six multiplexor problem with
less than five gates. One of the smallest solution is shown in Figure 11.11.
Notice this does not use any additional wires. While the multiplexor
can be solved by CCNOT without additional storage, with six lines only
even fitness scores are possible. This also means, even in the limit of
long programs, there is a bias towards higher fitness, increasing the mean
fitness from 32 to 32.5, cf. Figures 11.4, 11.5, 11.8 and 11.10.

It is clear that CCNOT has a nice bias for solving the six multiplexor
problem. On average small circuits have above average fitness and in
particular (at least with six lines) the chance of solving the problem is
far higher for small programs than in the limit of large programs.

6. Hill Climbing and Evolutionary Solution of
the Six Multiplexor Problem

Section 11.3 tells us how many solutions there are but not how easy
they are to find. To investigate this we carried out hill climbing and

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Fr
ac

tio
n

Fitness on 6 Multiplexor

Gaussian large circuit limit
5 CCNOT

10 CCNOT
20 CCNOT
50 CCNOT

100 CCNOT

Figure 11.4. Proportion of circuits composed of controlled-controlled-NOT (CC-
NOT, Toffoli) gates of each fitness on the 6 multiplexor problem. Solutions have
fitness of 64. (At least 100 million random circuits tested for each length.) Since the
only wires are those carrying the inputs (i.e. no additional memory) odd fitness values
cannot be generated. To simplify the graph these are excluded.

1e-20

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Fr
ac

tio
n

Fitness on 6 Multiplexor

6 Mux solution limit density 1.08 10-19

 10 CCNOT solutions 6 10-8

Binomial C64

5 CCNOT
10 CCNOT
20 CCNOT
50 CCNOT

100 CCNOT

Figure 11.5. Data as Figure 11.4. In Figure 11.4 the large circuit limit is approx-
imated by a Normal distribution with mean 32.5. Here the Binomial distribution
approximates the tails near fitness 0 and 64.

The Distribution of Reversible Functions is Normal 9

Measurement
Long program limit

20 30 40 50
100

200
Number of CCNOT gates 0

8
16

24
32

40
48

56
64

 Fitness on 6 Multiplexor

0

1e-06

1e-05

0.0001

0.001

0.01

0.1

Fraction

Figure 11.6. Convergence of 6 multiplexor fitness distribution as number of CCNOT
gates is increased from 20 towards the large circuit limit (ringed parabola right hand
end). (At least million random circuits tested for each length.) One additional mem-
ory (garbage) line ensures all output patterns can be implemented and in the large
circuit limit are equally likely. I.e. the density of solutions is 2−64.

population based search on the minimal circuit and a larger circuit. Our
results are summarised in Table 11.1.

Firstly we compare random search with these two more sophisticated
search techniques. Figure 11.10 shows the chance of solving the six mul-
tiplexor by random search of CCNOT circuits. From the first solutions
composed of 5 gates and no spare lines, the chance rises from about
3 10−8 to a peak of about 10 10−8 at 10 gates, and then falls towards
the theoretical (non zero) limit of 5.4 10−20 as the circuit size increases.
(No solutions were found in more than 10,000,000 trials with either one
or six spare lines.)

A local hill climber was run ten times. It mutated exactly one CCNOT
gate of the five in the six wire circuit and retained the mutant only if its
fitness was better. In seven runs a fitness level of 56 was reached. In two

Table 11.1. Number of runs solving the six multiplexor problem

Configuration Hill climber Population
6 lines 5 CCNOT 0/10 4/10

12 lines 20 CCNOT 1/10 10/10

10

0

0.02

0.04

0.06

0.08

0.1

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Fr
ac

tio
n

Fitness on 6 Multiplexor, 6 spare lines

20 CCNOT peak fit 40, .358binomial large limit
20 CCNOT

100 CCNOT
2000 CCNOT

Figure 11.7. Distribution of fitness on the 6 multiplexor problem of circuits of CC-
NOT gates and with 12 lines.

30.

32

34

36

38

40

1 2 3 4 5 6 78 101215 20 30 4050 100 200 500 1000 2000

M
ea

n
an

d
S

D
 o

f f
itn

es
s

di
st

rib
ut

io
n

Number of CCNOT

6 wire Mean limit 32.5

Mean limit 32.0

6 wires
7 wires

12 wires

Figure 11.8. The fitness distribution of small CCNOT circuits are asymmetric with
mean near 40. As number of Toffoli gates is increased, both mean and standard
deviation converge to theoretical binomial limits (32 and 4), except for circuits without
spare wires, in which case the mean converges to 32.5.

The Distribution of Reversible Functions is Normal 11

0.001

0.01

0.1

1

0 50 100 150 200

To
ta

l v
ar

ia
tio

n
di

st
an

ce

Number of CCNOT gates

Noise

6 wires
7 wires

12 wires

Figure 11.9. Discrepancy between measured distribution of fitness on CCNOT 6 mul-
tiplexor problem and large circuit limit (calculated as total variation distance [Rosen-
thal, 1995]). Rapid convergence to theoretical limit as program size increases is shown.
We would expect more spare lines to mean bigger programs are needed for conver-
gence. The plots are reminiscent of exponential decay shown for non reversible pro-
grams [Langdon, 2002a] suggesting group theory might lead to results on the rate of
convergence.

of the seven runs the hill climber reached fitness 56 significantly2 faster
than random search could be expected to. In seven of the remaining runs
there is no significant difference between the hill climber and random
search. (However random search always has a chance of solving the
problem. While the hill climber was stuck at local optima and could
never proceed.) In the remaining run, the hill climber took significantly
longer to reach fitness level 48.

Our hill climber found one solution in ten runs, when the number
of CCNOT gates was increased to 20 and six spare lines were added.
Six of the runs attained a score of 56, two runs 48 and the last 52.
None of these nine runs first reached its final fitness level significantly
faster or slower than random search might be expected to. Except again
random search might improve, whereas the hill climber was stuck at local
optima and could never proceed. (Each 20 CCNOT 12 wire program has
20×(2×(12−2)+(12−3)) = 580 or 20×3×(12−2) = 600 neighbours, so
our hill climber will take on average no more than 4185 attempts to try

12

0

1e-08

2e-08

3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

1e-07

1 2 3 4 5 6 78 101215 20 30 4050 100 200 500 1000 2000

Fr
ac

tio
n

Number of CCNOT

6 lines, fitness=64

Figure 11.10. Measured density of solutions on CCNOT 6 multiplexor problem.
(Based on measurements of at least 100,000,000 random circuits of each length. In one
million random samples at each length, with either one or six spare lines no solutions
were found.)

them all, cf. The Coupon Collector’s problem [Feller, 1957, page 284].
All runs had many more trials than this.)

In contrast the search space turns out to be very friendly to evolution-
ary search. Using the same mutation operator and a population of 500
(see also Table 11.2) in four out of ten runs minimal solutions to the six
multiplexor were found. (I.e. five CCNOT without spare wires). These
solutions took between 20 and 100 generations. In the remaining six
runs fitness level 56 was reached (in five cases significantly faster than
random search). Introducing six spare wires and extending the circuits
from five to 20 CCNOT makes the problem significantly easier. Ten out
of ten runs (with the same population size etc.) found solutions. The
solutions were found after 30–220 generations. This is significantly bet-
ter than hill climbing and population search of the smaller circuit size.

The effort [Koza, 1992, page 194] required to find a non-minimal
reversible solution to the six multiplexor using a population approach
(87,000) is somewhat similar to that required by genetic programming
to find a non-reversible one [Koza, 1992, Table 25.2]. In other words,
using CCNOT with spare lines has not been shown to be uncompetitive
with existing approaches.

The Distribution of Reversible Functions is Normal 13

Table 11.2. Parameters for Multiplexor Problem

Objective: Find a reversible function whose output is the same as the Boolean
6 multiplexor function

Inputs: D0 D1 D2 D3 A0 A1 (plus either 0 or 6 “true” constants)
Functions set: CCNOT
Fitness cases: All the 26 combinations of the 6 Boolean arguments
Fitness: number of correct answers
Selection: Tournament group size of 7, non elitist, generational
Pop size: 500
Program size: 5 or 20 CCNOT (Toffoli) reversible gates
Parameters: 100% mutation (Exactly one CCNOT gate is randomly chosen.

One of its three wires is chosen at random, and replaced by a
randomly chosen, different, but legal, wire.)

Termination: fitness=64 or maximum number of generations G = 500

D0

D1

D2

D3

A0

A1

1

4

CC

0

2

4

CC

3

4

3

CC

2

5

0

CC

2

2

5

CC

0

Figure 11.11. Example evolved minimal circuit (left) of controlled-controlled-NOT
(CCNOT, Toffoli) gates implementing a six way multiplexor. Genetic representation
on right. Two address lines direct one of the four data inputs to the output. Circles
with crosses indicate controlled wire. Note there are no additional memory (garbage)
lines and only five gates are required.

7. Discussion
It is important to realise the limiting distribution results hold in gen-

eral for reversible computing. Not just for the six multiplexor or similar
problems and for any reversible gate, not just the Toffoli (CCNOT) gate.
An interesting extension would be quantum computing. Random ma-
trices theory may give a formal bound on the size of circuits needed to
approach the limiting distribution.

The benchmark can be solved with no spare wires. Indeed [Toffoli,
1980, page 636] describes a set of gates for which no more than m spare
wires are needed for any finite reversible function. However allowing
modest increases in the size of solution by allowing more gates and spare
wires appears to make the fitness landscape more evolvable. I.e. easier
for evolutionary search to find solutions. It is not clear whether addi-

14

tional gates or wires or both is primarily responsible. In our example at
least, and we suggest perhaps to other problems, insisting upon minimal
solutions rather than sufficient solutions, which may be bigger, makes
the problem unnecessarily hard.

While NFL [Wolpert and Macready, 1997] applies to reversible com-
puting, we expect evolutionary search also to be better than hill climbing
and random search when used with other reversible gates, such as the
Fredkin gate, on this and similar problems.

The number of programs or circuits of a given size increases expo-
nentially with circuit size. Thus average behaviour across all programs
is dominated by the behaviour of the longest programs. Almost all of
these will behave as the limiting distribution suggest. Thus considering
only the limiting distribution is sufficient to describe the vast majority
of programs.

Where spare wires are included, for most programs, the Binomial
distribution can be approximated by a Normal distribution with the
same mean and variance. I.e. where fitness is given by a Hamming
distance, the average fitness is 1

2m2n and the variance is 1/2 1/2 m2n.
If we normalise fitness to the range 0 . . . 1, then the mean becomes 0.5
and the standard deviation is 2−

n
2

2
√
m

. Even with modest numbers of input
and output wires, the Hamming fitness distribution becomes a needle,
with almost all programs having near average fitness.

In non-trivial problems n and m rapidly become too large to allow
exhaustive testing. However the limiting distribution still applies. In the
limit the chance of a random program passing non-exhaustive testing is
given by the number of bits which are checked. I.e. if T tests are run and
only a p precision answer is needed, the chance of passing a test case is
2−p. The chance of passing all the test cases is 2−T×p. But note that,
randomly passing the test cases gives no confidence that the program
will generalise. If an additional independent test is added, the chance of
randomly passing it is only 2−p [Langdon and Poli, 2002]. In contrast
general solutions have been evolved via limited numbers of test cases by
genetic programming [Langdon, 1998] suggesting GP has a useful bias
for problems of interest.

8. Conclusions
As with traditional computing, as reversible circuits get bigger the

distribution of their functionality converges to a limit. Therefore their
fitness distribution must also tend to a limit. Table 11.3 summarises
the limit (with many wires) for fitness functions based on Hamming
distance and root mean error squared. In the limit, every implementable

The Distribution of Reversible Functions is Normal 15

Table 11.3. Distribution of Fitness of Large and Wide Reversible Circuits

Fitness function Mean Standard Deviation Perfect Solutions

Hamming 1
2
m2n 1

2

√
m2n 2−m2n

Normalised Hamming 1
2

1

2
√
m2n

2−m2n

RMS (small T) 1
2
2m 0.29 2m 2−mT

RMS (large no. tests) 0.34 2m 0.23 2m 2−mT

permutation is equally likely. Note, unlike traditional computing, in the
limit there is a finite chance of finding a solution.

Experiments on the six multiplexor problem have found solutions, in-
cluding minimal solutions, cf. Figure 11.11. These experiments suggest
the fitness landscape is amenable to evolutionary search, particularly if
non-minimal solutions are allowed. Which in turn suggests the use of
variable length evolution. Performance with CCNOT (Toffoli) gates is
similar to that of genetic programming with non reversible programs.
Simple hill climbing is liable to become trapped at sub optima, particu-
larly if constrained to search for minimal solutions.

We suggest that the common emphasis on minimal solutions is mis-
placed. These examples provide additional evidence that requiring tiny
solutions hurts evolvability (and other search techniques). There may
only be one smallest program but there are exponentially many larger
solutions.

Acknowledgments
I would like to thank Tom Westerdale, Ralph Hartley, Tina Yu, Wolf-

gang Banzhaf, Joseph A. Driscoll, Jason Daida, Lee Spector and Tracy
Williams.

Notes
1. In all the six multiplexor experiments we used speed up techniques based on those

described in [Poli and Langdon, 1999].

2. All significance tests in Section 11.6 use a 5% two tailed test.

References

[Bennett and Landauer, 1985] Bennett, Charles H. and Landauer, Rolf
(1985). Fundamental physical limits of computation. Scientific Amer-
ican, 253(July):48–56.

16

[Bishop, 1997] Bishop, Peter G. (1997). Using reversible computing to
achieve fail-safety. In Proceedings of the Eighth International Sym-
posium On Software Reliability Engineering, pages 182–191, Albu-
querque, NM, USA. IEEE.

[Feller, 1957] Feller, William (1957). An Introduction to Probability The-
ory and Its Applications, volume 1. John Wiley and Sons, New York,
2 edition.

[Fredkin and Toffoli, 1982] Fredkin, Edward and Toffoli, Tommaso
(1982). Conservative logic. International Journal of Theoretical
Physics, 21(3/4):219–253.

[Koza, 1992] Koza, John R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection. MIT Press.

[Langdon, 2002a] Langdon, W. B. (2002a). Convergence rates for the
distribution of program outputs. In Langdon, W. B., et. al., editors,
GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 812–819, New York. Morgan Kaufmann Pub-
lishers.

[Langdon, 2002b] Langdon, W. B. (2002b). How many good programs
are there? How long are they? In Rowe, Jonathan, et. al., editors,
Foundations of Genetic Algorithms VII, Torremolinos, Spain. Morgan
Kaufmann.

[Langdon and Poli, 2002] Langdon, W. B. and Poli, Riccardo (2002).
Foundations of Genetic Programming. Springer-Verlag.

[Langdon, 1998] Langdon, William B. (1998). Genetic Programming
and Data Structures. Kluwer.

[Poli and Langdon, 1999] Poli, Riccardo and Langdon, William B.
(1999). Sub-machine-code genetic programming. In Spector, Lee,
et. al., editors, Advances in Genetic Programming 3, chapter 13, pages
301–323. MIT Press.

[Rosenthal, 1995] Rosenthal, Jeffrey S. (1995). Convergence rates for
Markov chains. SIAM Review, 37(3):387–405.

[Toffoli, 1980] Toffoli, Tommaso (1980). Reversible computing. In
de Bakker, J. W. and van Leeuwen, Jan, editors, Automata, Lan-
guages and Programming, 7th Colloquium, volume 85 of Lecture Notes
in Computer Science, pages 632–644, Noordweijkerhout, The Nether-
land. Springer-Verlag.

[Wolpert and Macready, 1997] Wolpert, David H. and Macready,
William G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

