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Biological chromosomes are replete with repetitive sequences, micro
satellites, SSR tracts, ALU, etc. in their DNA base sequences. We
started looking for similar phenomena in evolutionary computation.
First studies find copious repeated sequences, which can be hierar-
chically decomposed into shorter sequences, in programs evolved using
both homologous and two point crossover but not with headless chicken
crossover or other mutations. In bloated programs the small number
of effective or expressed instructions appear in both repeated and non-
repeated code. Hinting that building-blocks or code reuse may evolve
in unplanned ways.

Mackey-Glass chaotic time series prediction and eukaryotic pro-
tein localisation (both previously used as artificial intelligence machine
learning benchmarks) demonstrate evolution of Shannon information
(entropy) and lead to models capable of lossy Kolmogorov compres-
sion. Our findings with diverse benchmarks and GP systems suggest
this emergent phenomenon may be widespread in genetic systems.

“DNA whose sequence is not maintained by selection will develop
periodicities as a result of random crossover” George P Smith [36].

1. Introduction

It has been long noticed that there are emergent phenomena in genetic
programming (GP) runs unintended by the human designer of the al-
gorithm. Early on it was observed that code which does not change
the output of the program (i.e. non-effective code) appears in many GP
runs [34, 38, 2]. It was also noted that bloat affects many GP systems.
Reasons for bloat and non-effective code have been examined in years
past [25, 4, 7] and remedies have been developed more or less effective
under particular circumstances (e.g. [29, 15, 22, 17]).

Here we would like to argue that non-effective code and bloat are
only the tip of an iceberg and that there is more to be discovered
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about “emergent phenomena” in GP runs. Particularly, we would like
to study repetition of patterns in GP-evolved programs. These are
instructions, or more interestingly, groups of instructions, that occur
several times in a program. In fact long sequences of instructions which
are repeated can sometimes be decomposed into shorter repeated se-
quences. This is interesting in itself and it parallels what has been
found in natural genomes. Biologists have long noticed the curious
existence of repeated sequences in genomic DNA.

Perhaps the reasons for emergence of repeated sequences is simi-
lar in biological and artificial evolutionary systems? What could we
learn from biological explanations, and can we transfer understanding
from Evolutionary Algorithms back into Biology? What instruments
are available for observing and examining repetitive sequences? Are
there new representations of GP that might be more conducive to evo-
lution once the reason for emergence of repeated sequences has been
understood? Are we on the way to discover that evolution reuses code
in a very interesting, yet hardly intelligible way? Are building blocks
involved in the formation of repeated sequences? These and more ques-
tions are raised by our observations.

We first discuss the biological background to repeated sequences.
Section 3 describes the two linear GP system used for our experiments
and the time series prediction and Bioinformatics protein classification
tasks they were applied to. Section 4 presents results of our experi-
ments. Section 5 concludes.

2. Biological Background

Biologists have discovered that there is a vast amount of repetition
in the DNA of microbes, plants and animals [12]. Less than 3% of
a human genome consists of protein-coding genes but about 50% of
it consists of repetitive sequences, many of viral origin [35, 31]. Ini-
tially Biologists concentrated upon understanding the protein-coding
part of genomes. However with whole genome analysis becoming more
common, repetitive DNA is a lively subject of research [26, 40, 1].

There are many forms of repeated DNA. This multitude confirms
that it is a complex phenomenon. There are satellites, mini-satellites
and micro-satellites. Repeats of different sizes are located next to each
other along the genome. There are ALU repeats and interspersed repet-
itive sequences. Repeating sequences are found in coding, non-coding
and intercistronic areas. Repeats are distributed over genomes and
species and constitute a considerable fraction of all DNA in many or-
ganisms.

The search for causes began some time ago. Smith, in 1976, did
numerical experiments in order to explain evolution of repeated DNA
sequences [36]. His conclusion was that homologous crossover is a ma-
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jor factor in the emergence of repeated sequences. In more recent
work crossover and DNA duplication have been identified to play an
important role. Driven by the inaccuracy of the DNA replication ma-
chinery, repeated sequences are both a consequence of misalignments
and a cause for crossover [13]. Hsieh and Lee considered a model of
bacterial genome growth working with a mechanism called “random
segmental self-copying” [18]. This model was able to explain, at a sta-
tistical level, the distribution of patterns found in bacterial genomes.
They concluded, since the statistical traces are still visible in the distri-
bution of DNA patterns, that growth processes of genomes must have
taken place.

In recent years, quantitative analysis tools have become available in
molecular biology that allow a closer look at these phenomena [9, 10,
39]. These will provide the opportunity to observe even more closely
how different repetitive patterns emerged during evolution. Also ap-
plications of repetitive sequences are starting to appear [19].

3. The Linear Genetic Programming System

Genetic programming (GP) has been described many times [20, 8, 21].
Essentially GP applies the well known genetic algorithm (GA) to the
task of searching for a program which does what is needed. Unlike
the typical GA, GP evolves both the numeric values and the form of
the solution. This additional freedom allows trial solutions of changing
complexity and opens up evolutionary computation to new, unexpected
and emergent effects.

We decided to start with linear genetic programming [27, 5, 6, 32] in
which the evolved data or chromosome is a linear program. Such a lin-
ear structure is analogous to the DNA molecule in biological genomes.
This makes linear GP a good place to start looking. A linear structure
is also intrinsically easier to search for repeated substructures.

In order to show the wide-spread nature of repeated sequences,
we used two radically different linear genetic programming systems.
GPengine, a standard academic C++ system, and a commercial ma-
chine code GP system, Discipulus. To allow repeatability, Sections 3.1
to 3.7 describe GPengine and Discipulus in detail. While Sections 3.8
and 3.9 describe the two benchmarks used. Sections 4.1 and 4.2 will
describe the results obtained, while the remainder of Section 4 will
describe the repeated sequences evolved by crossover.

3.1 Tournament Selection and Steady State Population

GPengine and Discipulus both use a steady state population and tour-
nament selection. In a steady state population individuals are steadily
added and removed from the population [37]. In contrast, in a gen-
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erational system, at the end of each generation, the whole population
is replaced by the next. In steady state systems there are no distinct
generations. In terms of measuring evolutionary time in a population
of M individuals, a generation equivalent is the time taken to create
and kill M individuals.

GPengine and Discipulus tournament selection are similar. Four
distinct individuals are chosen at random1 from the population. The
fitness of the first two are compared, giving a winner and a looser.
In the event that they have identical fitness (e.g. root mean squared
(RMS) error) the tie is broken arbitrarily. The second pair are com-
pared in the same way to give a second winner and looser.

The offspring produced from the two winners (by crossover, muta-
tion or copying (cloning)) replace the two losers. Note, that each tour-
nament always produces exactly two children and the same method is
used to produce both children.

Using this form of tournament selection in a steady state popula-
tion means the best in the population cannot get worse. The best
individual, however, is not immortal. If more than one individual has
the smallest RMS error, the best individual may by chance be deleted
(and replaced by the offspring of one of the other individuals which
also had the smallest error).

Discipulus differs only in details. Discipulus saves the best program
found so far as it runs. At the end of a run, we analyse the best of these.
Note that this program may have been found hundreds of generations
before the end of the run. While in GPengine runs, when we say the
best program, we will mean the best program in the population at the
end of the run.

3.2 Linear GP Representation and Program Evaluation

In GPengine each individual consists of a linear sequence of instruc-
tions. After input to the program is provided by initializing certain
registers, the sequence is executed and register values are changed ac-
cordingly. By convention, the output of a GP program resides in the
first register (R0).

Each instruction takes two inputs, performs its (integer) calculation
and writes the output to a register. The first input is always a register.
The second can either be a constant (0..127) or a register. Figure 1
describes a single instruction. We use eight 8-bit read-write registers.
As mentioned, before the individual is executed, all the registers are
initialised with data for the current fitness case. The sequence of in-
structions is obeyed from the start of the individual to its end. The
final value in register R0 is the GP’s output, i.e. its prediction.

1GPengine uses the C rand function.
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Arg 1
R0..R7

Output
R0..R7

Arg 2
Opcode

0...127

R0..R7
or+ − * /

Figure 1. Format of a GPengine instruction.

Again, Discipulus is slightly different. It does not interpret the
instructions, it executes them directly. To allow this they are Intel 486
machine code instructions, packed into 4 byte words (padded with nops
where needed to fill 4 bytes). Inputs and constants are held in separate
registers from the read/write floating point arithmetic registers.

3.3 GPengine Crossover’s (XOA and 2XO)

90% of tournaments are followed immediately by crossover of the two
winners, yielding two children which overwrite the two losers. In the
other 10% of cases, the losers are overwritten by copies of the win-
ners. Two-point crossover is used (see Figure 2) however GPengine
appends to the end of first parent if the code to be copied from the
second does not overlap the first. For this to happen the second parent
must be longer than the first (see Figure 3). In a second set of ex-
periments this append variation was disabled (and insertion was used
in all cases). If the chosen crossover points would mean the potential
offspring would exceed the maximum size (500 instructions) then the
crossover is aborted and the loser is not overwritten. Note the length
checks are made independently, so the other crossover may proceed.
Even if the looser is not replaced by crossover, it may still be changed
by mutation.

Note that in GP we take it for granted that the parent programs are
aligned at their starts. This provides a huge degree of both syntactic
and semantic homology for free. This is similar to Nature, where chro-
mosomes are crossed on a like-for-like basis. But at the detailed level
where natural crossover occurs, Nature has to work to find matching
DNA sequences to establish crossover points.

3.4 Discipulus Crossovers (2XO and HXO)

Discipulus provides two crossover operators. The first, two point, is
essentially the same as GPengine’s two point crossover. The second is
called “homologous” crossover (HXO) (see Figure 4). Here the same
two crossover points are used in both parents. So while HXO exchanges
code, the offspring are the same length as their parents [28].
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Figure 2. GPengine crossover. Two instructions are randomly chosen in each

parent (top two genomes) as cut points. If the code to be inserted from the

second parent at least partially overlaps the first, it is inserted in the normal

way to give the child (lower chromosome). With headless chicken crossover,

the inserted code is randomly generated.

Figure 3. XOA crossover. If there is no length overlap between code selected

in second parent and the first parent (top), the selected code fragment is

appended to the whole of the code from the first parent. (I.e. the middle

portion of the first parent in not removed.)

Figure 4. HXO crossover. As with the other crossover operations, two parents

(top two programs) crossover to yield two child programs (bottom). In HXO

the two crossover cut points are the same in both parents. Note code does

not change its position relative to the start of the program (left edge) and

the child programs are the same lengths as their parents.
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3.5 Variable length Mutation – Headless Chicken Crossover

Initial programs are quite short. In order to study if crossover was
uniquely responsible for repeating sequences we used a mutation op-
erator which could change program lengths. We introduced headless
chicken crossover (HCX) [3] to linear GP. Although described as a
crossover operation, only the length of the second parent has any in-
fluence on the child. Initially HCX works in the same way as two point
crossover (see Figure 2) except that, instead of inserting a code frag-
ment taken from the second parent, a randomly generated sequence of
code of the same length is inserted.

GPengine, unlike Discipulus, does not write-protect its inputs, this
means that a long sequence of random instructions will eventually over-
write all the registers. Since the instructions are not reversible, each
overwrite destroys information. If the random sequence is long enough
it is virtually guaranteed to destroy all information in the registers.
Once that happens a program’s initial conditions cannot affect its sub-
sequent behaviour. Such programs are useless at predicting and so
have large RMS errors. Assuming each overwrite is 100% destructive,
a random sequence of about 8(log 8+γ) ≈ 21.3 instructions will render
the offspring useless [23]. The expected size of the crossover fragment
is 1

l

∑l−1
i=0

1
2 (l− i) = (l + 1)/4, where l is the number of instructions in

the second parent. Hence we anticipate runs with only headless chicken
crossover will not bloat much above 84 instructions.

When the second program is long enough, headless chicken crossover
becomes like a supersonic jet nozzle. Flow downstream of the nozzle is
independent of that upstream. Similarly, program outputs (which are
downstream of the random code) are independent of inputs. I.e. they
are disconnected from upstream perturbations.

3.6 GPengine Point Mutation

After two children have been produced by crossover or by simply copy-
ing their parents (cloning), there is a 40% chance that they will be
mutated. Point mutation consists of choosing uniformly at random
exactly one instruction in the individual and changing it. Each of the
four fields in the chosen instruction (cf. Figure 1) is equally likely to
be changed. Apart from ensuring the new instruction is different, the
mechanism is the same as that used to create the initial population.
Note this means the second argument is approximately equally likely
to be a constant (0..127) or a register (R0..R7). The other three fields
are chosen uniformly from their legal values.
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3.7 Discipulus Mutation

Discipulus mutation is similar to GPengine’s point mutation. It, too,
mutates offspring whether they have been created by crossover or copied
(reproduced) directly from their parents. There are three types of Dis-
cipulus mutation. Each ensures that offspring is still a valid machine
code program. They do not change the program’s size. They are 1) re-
place a 4 byte instruction block with another 4 bytes of randomly gen-
erated machine code, 2) replace an instruction (op-code) with another
machine code instruction of the same length, 3) replace an instructions
operand (input, variable or constant) with another input variable or
constant.

3.8 Mackey-Glass Benchmark and GPengine

Since the goal was to study the long term behaviour of an evolving
population of programs we need a moderately difficult task. The pop-
ulation should continually improve and neither get stuck because the
problem is too hard nor quickly find the optimal solution. We chose the
problem of time series prediction as this is both hard and interesting.
Indeed it has applications in scientific, medical and financial model-
ing [30]. We used the IEEE benchmark Mackey-Glass chaotic time
series (http://neural.cs.nthu.edu.tw/jang/benchmark/, τ = 17,
1201 data points, sampled every 0.1)). Mackey-Glass is a continuous
problem. The benchmark converts it to discrete time and we digitised
the continuous data to give byte sized integers (by multiplying by 128
and rounding to the nearest integer), see Figure 5.

The task for the GP is, given historical data, to predict the next
value. Since the series is chaotic this cannot be done exactly. GP is
given eight earlier values from the series. Arguably the most useful is
that from the previous time step (which is loaded into R7) but values
2 time steps ago, 4, 8, 16, 32, 64 and 128 time periods back are also
available. As with the benchmark, values before the start of the se-
quence are set to zero. Note that the GP system only has eight byte
registers, and if it needs scratch registers, it may have to sacrifice one
or more inputs to store intermediate results.

3.9 Locating Animal Proteins with Discipulus

Once again we wanted a challenging problem but radically different
from the predicting tomorrow’s share price from a time series. So we
chose a binary classification (rather than continuous regression) prob-
lem from biology (rather than finance or engineering). It is possible to
predict the function of a protein from the fractions of each amino acid
from which it is made. This has the advantage that, in many cases, data
is readily available from Swissprot or can also be inferred from gene
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Figure 5. Discrete Mackey-Glass chaotic time series

DNA sequences. Naturally, with such a crude measure only limited
predictions can be made. Nevertheless Reinhardt and Hubbard [33]
showed anino acid composition can be used to predict the location of
the protein from which it may be possible to infer something of its
function. In [33] they used machine learning to differentiate between
seven cellular locations spread across both animals (eukaryotic, they
excluded plants) and microbes (prokaryotic).

We restrict ourselves to localising animal proteins (one normally
knows if a protein is animal or bacterial). Since we are seeking a
binary classification problem, we evolve models which predict if an
animal protein will be found in the cell nucleus or elsewhere. (I.e. in
the cell cytoplasm, in the mitochondria or outside the cell [33].) We
used the same Swissprot data for 2427 proteins as [33]. There are 1097
nuclear (and 1330 non-nuclear) sequences of amino acids (see Figure 6).

We counted the number of each amino acid in each protein and
allocated nuclear proteins to class 1 and the others to class 0. This
gave 2427 records, each containing 20 integers and a class label (0/1).
Following [14] we split these evenly into a training and a test file.

4. Experimental Results

4.1 Predicting the Mackey-Glass chaotic time series

Three pairs of two groups of ten independent runs were made. In the
first pair GPengine’s default crossover (i.e. with append, XOA) was
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Figure 6. Number of amino acids in Nuclear and non-nuclear proteins used

with Discipulus. To reduce clutter only 5% of the data are presented. The

three (of twenty) amino acids plotted where selected by Discipulus as being

the best discriminators. The non-linear function of number of Valines was

also suggested by an evolved model.

used. In the second pair two-point crossover (without append, 2XO)
was used. Finally, the last pair used headless chicken crossover (HCX).
In the second of each pair, selection was turned off by deciding which
individuals win or loose each tournament entirely at random. All runs
use point mutation (cf. Table 1).

In all 3 × 10 runs with selection, fitness improved and for many
generations large parts of the population had the same fitness. Figure 7
shows the evolution of prediction error for the first of ten runs (the
others are similar). Cf. Table 2.

Figure 8 shows the evolution of program size. Initially programs
are between one and fifteen instructions long, with a mean of seven.
However, in runs with fitness selection and crossover (XOA and 2XO)
length quickly increases and the longest program is either 500 or very
near to this limit. Such bloat was expected [25]. As predicted in
Section 3.5, in mutation only runs (HCX) with selection, the increase
in size is less dramatic. However it was a surprise to see bloat in
runs without selection when using crossover with append (XOA) [24].
An initial thought was that this was due to the asymmetric append
variation of the crossover operation. This appears to be correct, since
when the variant is removed and normal two-point crossover linear GP
is used instead, bloat does not appear without fitness selection. (See
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Objective: Evolve a prediction for a chaotic time series
Function set: + − × ÷a (operating on unsigned bytes)
Terminal set: 8 read-write registers, constants 0..127. Registers

are initialised with historical values of time series.
R0 128 time steps ago, R1 64, R2 32, R3 16, R4 8,
R5 4, R6 2 and finally R7 with the previous value.
Time points before the start of the series are set to
zero.

Fitness: Root mean error between GP prediction (final value
in R0) and actual (averaged over 1201 time points).

Selection: Steady state, tournament 2 by 2
Initial pop: Random program’s length uniform chosen from 1..14
Parameters: Population 500, max program size 500,

90% crossover, 40% mutation
Termination: 125 500 individuals evaluated

aIf second argument of ÷ is zero, ÷ returns zero.

Table 1. GPengine parameters for Mackey-Glass time series prediction.
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Figure 7. Evolution of Mackey-Glass prediction error (first of ten runs). Note

the population chases after the best (lowest) fitness. For many generations

at least 25% of the population have the same best fitness. (Sometimes more

than half)
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RMS error Mean

XOA 2.85 2.30 3.56 3.34 3.68 4.30 2.24 5.37 2.38 4.40 3.44
29.40 6.26 30.20 30.17 30.18 8.03 30.07 30.17 19.17 30.22 24.39

2XO 3.53 3.47 1.60 4.27 5.37 2.43 3.81 5.37 5.37 2.72 3.79
8.60 12.59 7.66 33.32 14.40 19.62 6.23 17.37 29.85 23.63 17.33

HCX 4.03 4.04 3.64 4.06 3.93 3.61 3.73 3.20 3.78 3.94 3.80
9.95 6.32 9.95 11.71 16.59 15.83 7.92 7.37 10.71 8.60 10.49

Table 2. Best Mackey-Glass prediction error at end of GPengine runs. Using

two point crossover with append (XOA), without append (2XO) and headless

chicken crossover crossover (HCX). Lower row of each pair refers to the runs

without fitness selection.
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Figure 8. Evolution of mean program size and variation between Mackey-

Glass prediction runs. (Variation between HCX and 2XO without selection,

lowest plots, is too small to show, and so is omitted.) Except for the two-

point crossover with append (XOA) runs, selection is required for bloat.

With crossover (XOA or 2XO) the mean population size appears to increase

exponentially, until constrained by the maximum size limit (500).

lower lines in Figure 8.)

4.2 Predicting Protein Location

For each experiment on the Swissprot animal proteins (cf. Section 3.9)
Discipulus was run ten times, always in classification mode and with
identical parameters but with different initial random number seeds.
As far as possible we used Discipulus default configurations (actual val-
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Objective: Evolve a prediction of nuclear or non-nuclear loca-
tion for animal proteins based on their amino acid
composition

Terminal set: 2 read-write FPU registers, 43 randomly chosen con-
stants. Number (integer) of each of the 20 amino
acids in the protein. (Codes B and Z are ambigu-
ous. Counts for B were split evenly between aspartic
acid D and asparagine N. Those for Z between glu-
tamic acid E and glutamine Q.)

Fitness: DSS [16, 14]. Parsimony not used.
Selection: Steady state, tournament 2 by 2
Initial pop: Random program’s length uniform chosen from

4..80 bytes
Parameters: Population 500 (10 × 50 demes), max program size

2048 (bytes), 95% crossover (either all 2XO or
95% HCX and 5% 2XO) 95% mutation (three types
30%, 30%, 40%)

Termination: 500 000 individuals evaluated

Table 3. Discipulus parameters used in animal protein location prediction

experiments. Only the maxiumnum program size and HCX were changed

from factory defaults.

Percent correct Nuclear vs. non-Nuclear prediction Mean
2XO 82 80 80 80 80 81 82 78 79 81 80.3
HXO 81 81 79 80 80 79 78 81 78 81 80.0

Table 4. Accuracy of best animal protein location predictors evolved using

Discipulus two point (2XO) and HXO (homologous) crossover. Performance

on training and test datasets is always within a few percent of each other (in-

dicating little over fitting) therefore we report performance averaged across

both.

ues are given in Table 3). In both experiments the maximum program
size was 2048 bytes. In the first experiment, “homologous crossover”
was disabled, whilst in the second it was left at its default rate (95%).
Table 4 gives the accuracy of the best models found by each run.

As an aside, when Discipulus was allowed to run in its default multi-
run mode, it evolved a team solution with an accuracy of 87.1%. Rein-
hardt and Hubbard [33] did not do a nuclear vs. non-nuclear classifica-
tion. Instead they report results for the easier problems of classifying
animal nuclear proteins against each of their other classes one at a
time. Table 2 in [33] gives mean accuracies of 84.9%, 84.8% and 86.1%
when classifying nuclear proteins against each of the three locations in-
dividually. Given the variance of the neural network runs, one cannot
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say that Discipulus did significantly better, but it is doing at least as
well on a harder version of the problem.

4.3 Repeated Program Instruction Sequences

In the random initial GPengine programs there are no repeated se-
quences. They are overwelmingly unlikely to arrive by chance. How-
ever, as crossover, mutation and selection get to work and programs
grow, instructions start to become repeated. Initially just single in-
structions are repeated but the length and number of repeats increases
(see Figure 9).

All the best programs of the ten runs with the append crossover vari-
ant (XOA) contained repeated sequences (see Figure 10). The longest
sequences contained from 12 to 62 instructions. All of these occurred
twice, however the programs also contained other, distinct, shorter se-
quences which occurred multiple times. Again the XOA runs without
selection throw up a surprise: eight of the ten best programs2 contain
sequences of instructions which are repeated. All ten runs with two-
point crossover without the append variation (2XO), produce repeated
sequences, however none of the ten 2XO runs without fitness selection
produced repeated instructions.

Both the ten 2XO and ten HXO Discipulus runs, evolved binary
classification programs with repeated instructions like those found in
GPengine 2XO runs. In 19 cases the longest sequence was between
6 and 64 instructions. (The remaining run found a short program
containing a few individual instructions repeated a small number of
times, but no repeated sequences.)

Figure 10 plots the variation of maximum length of repeated instruc-
tions in each of the 6× 10 best of run programs against their size. As
alternative to saying that repetitive sequences are due to the crossover
operator, Figure 10 suggests that the length of the programs (i.e. bloat)
is more important. To some extent this is born out by the runs with
headless chicken crossover. The ten runs with selection produced best
predictors of between 18 and 76 instructions (those without selection
contained 2–21 instructions). None contained repeated instructions.

Figure 11 shows the location of repeated sequences in a single evolved
program. Figure 11 stresses the shear number of repeated instructions.
It also shows some repeated instructions are part of long sequences
(up to 10% of program length) and that repeated instructions appear
throughout the program. (The tartan pattern in Figure 11 suggests
their may be other structures which have yet to be investigated.)

Our results strongly suggests that crossover is responsible for re-

2Even in the absence of selection one can observe the quality of programs by
evaluating the fitness function.

Complex Systems, 15 (2005) 285–306



Repeated Sequences in Linear GP 299

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

Lo
ng

es
t R

ep
ea

tin
g 

S
eq

ue
nc

e

Generation equivalents

Longest repeated sequence
Program length/10

Figure 9. Evolution of length of longest repeated sequence of instructions in

the best Mackey-Glass prediction program produced by the first run with

two-point crossover (2XO) and fitness selection. The length of the programs

is also shown.

peated sequences. However we cannot rule out the possibility that
bloated long programs produced by mutation might also contain re-
peated sequences, although this does seem unlikely. As mentioned
before, mutation is unable to produce long programs, so we cannot
test this.

4.4 Effective Code

Rapid increase in length is characteristic of bloat [25]. We used al-
gorithm 2 from [11] to analyse the best predictors of the GPengine
2XO and XOA runs. We also used Discipulus’ own intron removal
tool. These showed that the majority of instructions have no impact
on the output of the programs. I.e., they are ineffective code (introns).
Figure 12 shows the distribution of instructions which could affect the
prediction along the length of one program. The other bloated best
of 2XO GPengine runs are similar to that shown in Figure 12. How-
ever in three runs there was less bloat. Their best predictors are much
shorter. They contain only one effective instruction, which is near the
end. There is no obvious correlation between whether an instruction
is effective and how many times it is repeated.

As the fraction of ineffective code increases so mutation is more and
more unlikely to change a program’s performance. This is (part of)
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Figure 10. Length of longest repeated sequence of instructions in the best pre-

diction programs. 2×10 Discipulus protien locations runs and 4×10 Mackey-

Glass prediction runs. With fitness selection all three types of crossover

evolved repeating sequences. As do 8 of 10 XOA runs without fitness selec-

tion but no 2XO runs do when tournaments are random.

the reason why Mackey-Glass populations converge towards a single
fitness, cf. Figure 7. Similarly as evolution increases the number of re-
peated instructions, mutation increasingly often duplicates an existing
instruction. However, on average, 88% of point mutations to the best
Mackey-Glass programs evolved by 2XO produce a new instruction.

4.5 Entropy and Information Content

There are 8 × 8 × 4 × (128 + 8) = 34816 GPengine legal instructions
(cf. Figure 1) Since log2 34816 = 15.087463, a randomly chosen in-
struction contains slightly more than 15 bits of information. Using
this measure suggests that as the population bloats each predictor con-
tains more information. A crude way of estimating actual information
content is to compress the programs using gzip [21]. Figure 13 shows
information content increases over time but as programs contain more
repeated sequences, gzip’s Lempel-Ziv algorithm is able to compress
the programs. Smaller size gives a lower estimate of information con-
tent of the programs. Figure 13 shows that gzip (with default parame-
ters and a simple ASCII text format) initially imposes an overhead of
about 100 bytes. After about generation 150, gzip is able to recognise
patterns in the programs and use them to compress it. For compari-

Complex Systems, 15 (2005) 285–306



Repeated Sequences in Linear GP 301

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400 450

P
os

iti
on

 a
lo

ng
 P

ro
gr

am
 L

en
gt

h

Position along Program Length

Figure 11. Location of repeated instructions in the best Mackey-Glass pre-
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than 10 are plotted with ×, those less, with +. This run chosen as it best

highlights the structure. Notice almost every instruction is repeated, so the

diagonal is almost solid. (The figure is symmetric about the diagonal.) Each

cross in a vertical line, say x=400, indicates an instruction which is identical

(to that at position 400).

son our Mackey-Glass benchmark, without compression, contains 8576
bits (1072 bytes) of information (1201× log2 141 = 8576). Lossy (pro-
grammatic) Kolmogorov compression is possible and achieves 7.6 times
more compression than gzip’s lossless compression.

5. Conclusion

Approximately half of human DNA is composed of repeated sequences.
Initial experiments using two very different linear GP systems (one
evolving Intel floating point machine code, one using a C++ interpreter
of integer arithmetic) on two different benchmarks (one time series pre-
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diction, the other a Bioinformatics binary classification) suggest where
artificial genetic systems have the space to evolve repeated patterns,
they will emerge. In our runs, both the number of repeated sequences
and their length increase with time but so, too, does the length of the
programs. These bloated programs are not random. Evidence suggests
that crossover is responsible.

We have observed the evolution of long repeated sequences of in-
structions. The chances of them being found purely at random are in-
finitesimal. However, while we anticipate these sequences occur widely,
so far we have only observed them in linear genetic programming (GP).
Of course it is interesting to see whether the same, or other emergent
phenomena, occur in tree GP. Most importantly, can these observa-
tions be used to help us build better systems in the future? Finally,
could experiments of this type in artificial evolution give insight for
biologists? For example, are statistical distributions of repeated se-
quences comparable to what happens in real genomes?
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E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska, Eds., Morgan Kauf-
mann Publishers, pp. 812–819.

[24] Langdon, W. B., and Poli, R. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[25] Langdon, W. B., Soule, T., Poli, R., and Foster, J. A. The
evolution of size and shape. In Advances in Genetic Programming 3,
L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds.
MIT Press, Cambridge, MA, USA, June 1999, ch. 8, pp. 163–190.

[26] Lupski, J. R., and Weinstock, G. M. Short, interspersed repetitive
DNA sequences in prokaryotic genomes. Journal of Bacteriology 174
(1992), 4525–4529.

Complex Systems, 15 (2005) 285–306



306 W. B. Langdon and W. Banzhaf

[27] Nordin, P. Evolutionary Program Induction of Binary Machine
Code and its Applications. PhD thesis, der Universitat Dortmund am
Fachereich Informatik, 1997.

[28] Nordin, P., Banzhaf, W., and Francone, F. D. Efficient evolu-
tion of machine code for CISC architectures using instruction blocks
and homologous crossover. In Advances in Genetic Programming 3,
L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J. Angeline, Eds.
MIT Press, Cambridge, MA, USA, June 1999, ch. 12, pp. 275–299.

[29] Nordin, P., Francone, F., and Banzhaf, W. Explicitly defined
introns and destructive crossover in genetic programming. In Advances
in Genetic Programming 2, P. J. Angeline and K. E. Kinnear, Jr., Eds.
MIT Press, Cambridge, MA, USA, 1996, ch. 6, pp. 111–134.

[30] Oakley, H. Two scientific applications of genetic programming: Stack
filters and non-linear equation fitting to chaotic data. In Advances in
Genetic Programming, K. E. Kinnear, Jr., Ed. MIT Press, 1994, ch. 17,
pp. 369–389.

[31] Patience, C., Wilkinson, D. A., and Weiss, R. A. Our retroviral
heritage. Trends in Genetics 13 (1997), 116–120.

[32] Perkis, T. Stack-based genetic programming. In Proceedings of the
1994 IEEE World Congress on Computational Intelligence (Orlando,
Florida, USA, 27-29 June 1994), vol. 1, IEEE Press, pp. 148–153.

[33] Reinhardt, A., and Hubbard, T. Using neural networks for predic-
tion of the subcellular location of proteins. Nucleic Acids Research 26,
9 (1 May 1998), 2230–2236.

[34] Singleton, A. Walter Tackett’s PhD thesis citing Andy Singleton
“personal communication” as proposing the “intron” explanation for
bloat in GP trees., 1994.

[35] Smit, A. F. A. The origin of interspersed repeats in the human genome.
Current Opinions in Genetics and Development 6 (1996), 743–748.

[36] Smith, G. P. Evolution of repeated DNA sequences by unequal
crossover. Science 191, 4227 (13 Feb 1976), 528–535.

[37] Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings
of the third international conference on Genetic Algorithms (George
Mason University, 4-7 June 1989), J. D. Schaffer, Ed., Morgan Kauf-
mann, pp. 2–9.

[38] Tackett, W. A. Recombination, Selection, and the Genetic Construc-
tion of Computer Programs. PhD thesis, University of Southern Cali-
fornia, Department of Electrical Engineering Systems, USA, 1994.

[39] Taneda, A. Adplot: detection and visulization of repetitive patterns
in complete genomes. Bioinformatics 5 (2004), 701–708.

Complex Systems, 15 (2005) 285–306



Repeated Sequences in Linear GP 307

[40] Toth, G., Gaspari, Z., and Jurka, J. Microsatellites in different
eukaryotic genomes: Survey and analysis. Genome Research 10 (2000),
967–981.

Complex Systems, 15 (2005) 285–306


