
GECCO’2003, E. Cantu-Paz, et. al., editors, Chicago, 12-16 July

Convergence of Program Fitness Landscapes

W. B. Langdon

Computer Science, University College, London, Gower Street, London, UK
W.Langdon@cs.uc1.ac.uk http://www.cs.ucl.ac.uk/staff/W.Langdon

Abstract. Point mutation has no effect on almost all linear programs.
In two genetic programming (GP) computers (cyclic and bit flip) we
calculate the fitness evaluations needed using steepest ascent and first
ascent hill climbers and evolutionary search. We describe how the average
fitness landscape scales with program length and give general bounds.

1 Introduction

Fitness landscapes are an attractive metaphor. Easy problems are supposed to
have “smooth” landscapes, while hard problems are supposed to be caused by
“rugged” landscapes. Much analysis of landscapes is empirical, but these have
not led to general results in GP. [Kinnear, Jr., 1994] found little relationship
between GP difficulty and ruggedness on a number of GP benchmarks, while
[Nikolaev and Slavov, 1998; Clergue et al., 2002] give counter examples. However
[Daida et al., 2001] agrees the landscape metaphor may be deceptive for GP. We
conclude the empirical picture is not clear. As an alternative to amassing yet
more data, we have analysed the general properties of GP, giving general results.

In [Langdon and Poli, 2002] we showed for both linear and tree genetic pro-
gramming (GP) that in general the space of programs which GP searches con-
verges as the programs get bigger. That is, beyond a threshold further increase
in size makes little difference. Since then, for simplicity, we have concentrated
on linear GP [Banzhaf et al., 1998]. In linear GP, a program consists of a linear
sequence (i.e. no loops) of instructions which manipulate memory registers. In
[Langdon, 2002a] we defined five computer models (any, average, cyclic, bit flip
and Boolean) and provided quantitative bounds on how long programs have to
be so that the distribution of their outputs is near its limit. [Langdon, 2002b]
deals quantitatively not only with program’s outputs but also with the rela-
tionship between a program’s outputs given different inputs, i.e. the function it
implements. In [Langdon, 2003] we show that reversible programs tend to rather
different limits. So far we have gathered formal results about the distribution
of fitness of programs. This earlier analysis tells us about the search space but
not how search operators connect it into a fitness landscape. Using the same
computer models we use simple mutation in conjunction with two simple hill
climbing strategies and population based search to yield results on the conver-
gence of fitness landscapes and expected solution times.

In Sects. 3 and 4 we consider in detail the fitness landscape of two simple
computers and calculate how long various search techniques will take to find
programs of specified fitness. Section 5 shows we can put bounds on the fitness

1

http://www.cs.ucl.ac.uk/staff/W.Langdon


landscape for any computer, while Sect. 6 considers average behaviour across all
computers. Some experimental measurements for the fifth model (Boolean linear
GP) are given in Fig. 3.

2 Size of Neighbourhood – Point Mutation

Point mutation uniformly at random selects one instruction in a program and
changes it. (So the mutant is always genetically different from its parent). As-
sume there are I different instructions, so a point mutation at a chosen point
will convert the program to one of I−1 other programs. If the program contains
l instructions, there are l(I−1) other programs that can be created from it by a
single point mutation. I.e., under point mutation each point in the fitness land-
scape has l(I − 1) distinct neighbours. Note the point mutation neighbourhood
size increases directly in proportion to program size.

However since point mutation does not change program size, only a tiny
fraction of all the programs can be reached by point mutation. Even as a fraction
of programs of the same size, the neighbourhood is only l(I − 1)/I l ≈ l I1−l of
the total.

3 Cyclic Computer – Point Mutation Neighbourhood

The cyclic computer has only three instructions (I = 3) add one to memory,
subtract one from memory, do nothing. Therefore the point neighbourhood size
under point mutation is l(I − 1) = 2l. The cyclic computer is obviously an
unrealistic model of real computation, nonetheless by studying it we learn about
real computers.

Suppose our program contains n+ increments, n0 no ops and n− decrements.
The complete point mutation neighbourhood contains n− programs whose an-
swers are two more (allowing wrap around), n0+n− whose answers are one more,
n++n0 whose answers are one less and n+ whose answers are two less. Note there
are no neutral changes. The proportions of these four changes depends only upon
the relative numbers of the three types of instructions in the original program
and not directly on the length of the program. If we look at changes in program
output, the point mutation landscape converges immediately to 1/6 −2, 1/3 −1,
1/3 +1 and 1/6 +2. Whereas if we consider the actual outputs exponentially
large programs are needed for convergence [Langdon, 2002a].

If we start from a very unusual part of the search space (n+ 6= n0 6= n−) then
this will distort the point mutation fitness landscape by changing the fractions
of the four changes. If high fitness is associated with output values very different
from those input, high fitness programs will have n+ very different from n−. This
means point mutation of high fitness programs will on average produce offspring
with lower fitness.

3.1 Hill Climbing with Point Mutation – Cyclic Computer

The simple instruction set means the output of any program is (x+ p) mod 2m.
(Where x is its input, m is the number of bits in the output register and
p = n+ − n−. So p is a constant for the program.) Note given the output for an

2



input, the program’s output for any other input can be inferred. Indeed we need
only define one fitness case (e.g. input is zero). Define F = |output − target|,
so the goal is to minimise F . We can calculate how long it will take two hill
climbing strategies to find a solution.

In both cases, we start from a single randomly chosen program. For simplicity
assume n+ = n−. (This is equivalent to assuming random fluctuations are small
compared to the target. I.e.

√
l/3� target. Also assume target < 2m−1, so the

fastest route is to increase p.) p = 0 initialy and the task is to find a sequence
of point mutations which will increase p to target. If we use steepest ascent,
we need only replace target/2 decrement instructions by increment instructions.
This will take 2l × target/2 = l × target, fitness evaluations.

With first ascent, the fraction of mutations incrementing n+ is n0/2l + n−/2l,
while the fraction leading to a fall in n− is n−/l. Define x = n+/l and y = n−/l
and treat x and y as continuous variables of the expected case. So

dx

dt
= 1

l

(
n0
2l + n−

2l

)
⇒ x = 1− 2

3e
−t/2l and dy

dt
= − 1

l
n−
l ⇒ y = 1

3e
−t/l

The number of steps expected to be needed to first find a solution is given
by the value of t for which target = l(x− y). So target = l(1− 2

3e
−t/2l− 1

3e
−t/l).

Rearranging gives

t = −2l log(2
√

1− 3 target/4l − 1) If target� l t ≈ 3/2 target (1)

That is, fitness initialy rises linearly but the rate of increase slows as the maxi-
mum fitness, given by the length of the program l, is approached.

If target = l the problem becomes very similar to the OneMax problem. The
approximation of treating x and y as continuous variables needs to be treated
with care. Set target = l − ε in (1) and assuming l � ε and then let ε = 1 gives
t being in the region of 2l log(2l/3). (Cf. O(l log l) for OneMax [Muhlenbein
and Schlierkamp-Voosen, 1993].) In contrast steepest ascent requires l2 fitness
evaluations.

3.2 Population Approaches – Cyclic Computer

In the following analysis for simplicity we allow an offspring produced by point
mutation into the population only if it is fitter than its parent. In which case, it
replaces its parent.

Parallel Steepest Ascent With steepest ascent each step explores the com-
plete neighbourhood (2l fitness evaluations) but, unless the problem has been
solved, steepest ascent is guaranteed to find a better child, which will be accepted
by the population. Therefore the solution found will be the direct descendent of
the fittest program (i.e. smallest F ) in the initial population (fitness F0). Since
fitness is given by difference between a programs output and the required output
and steepest ascent reduces the difference by 2 each generation, a solution will
be found in generation F0/2.

3



The number of n+ in the initial (random) programs is given by a binomial
distribution Cl−n+

n+ ( 1
3 )n+( 2

3 )(l−n+). Even for modest l, this can be approximated
by a Gaussian distribution with mean l/3 and variance 1

3
2
3 l = 2

9 l. The initial
distribution of n0 and n− are the same as that of n+. Provided none of them
is near zero, we can treat the distribution of any two as being independent, so
the distribution of p = n+−n− can also be approximated by a Gaussian (whose
mean is the difference in the means (0) and variance is sum of the variances 4

9 l,
i.e. standard deviation

√
4/9l = 2

3

√
l).

The likely fitness of the fittest program in the initial population is given by the
population size, Ml, F0l = target− 2

3

√
l Φ−1(1−1/Ml). (Φ−1 is the inverse of the

integral of the Gaussian distribution, it gives the number of standard deviations
for a particular probability.) Note that both larger initial programs and a larger
population can be expected to give a fitter initial best program. The expected
number of generations to find a solution is target/2−maxl 1/3

√
l Φ−1(1−1/Ml).

If the initial population is large, so that there are a large number of programs of
each length, we can be confident that the fittest program in the initial population
is also one of the longest. Further that Φ−1(1−1/Ml) ≈ 3. Therefore the expected
number of generations to find the first solution will be about target/2−

√
lmax.

The number of fitness evaluations depends upon the spread of initial fitness
values and the selection technique used. We assume the selection pressure is
strong enough to ensure at least one copy of the fittest program is copied to
the mating pool. With tournament selection and tournaments of size T there
will be on average T copies of the best. This leads to rapid convergence of the
population (in ≈ logT M generations1). If logT M � target/2−

√
lmax then the

number of fitness evaluations expected to be required to find a solution will be
about Mlmax(target− 2

√
lmax). Rather fewer fitness evaluations will be needed

if the population still retains shorter programs.
At the other extreme is to have no selection pressure and instead to give each

member of the current population exactly one child. With steepest ascent, each
offspring will be exactly 2 fitter than its parent and so all children will be inserted
into the next generation. Therefore the number of fitness evaluations expected
to be required to find a solution will be about Ml(target− 2

√
lmax). Where l is

the mean length of programs, in the initial and hence every generation.
Notice how the temporal granularity of having fixed non-overlapping genera-

tions gives rise to a simple population dynamics. Suppose instead of forcing each
steepest ascent in the population to synchronise by waiting for every new child,
we allow each child to be compared with its parent immediately. This gives a
speed advantage to shorter programs. Using tournament selection we now get
a race. A few of the longer programs initialy have an advantage and we can
expect the average length of programs to start to increase. What happens next
depends in a complicated way on the distribution of program lengths and the
selection pressure. If the selection pressure is very high and the programs are of
similar lengths then we expect shorter programs to be removed from the popula-
tion before they can catch up with the fittest (longest) program and the average
1 [Goldberg and Deb, 1991, p74 and p80] includes an additional logT logM term.

4



program size will continue to increase. However if the shorter programs are very
much shorter and the selection pressure is not so great, one of them can increase
its fitness much faster than the longest and so then will be selected for, causing
the average program length to decrease.

Since the second selection scheme (where every program gets exactly one
child, and hence is replaced by it) is simpler, we can analyse it in more detail.
Assume all programs are at least long enough to be able to solve the problem.
After tM fitness evaluations the fitness of the best program of length l will be
about target − 2

√
l − t/l. (Remember its initial fitness ≈ target − 2

√
l and it

improves by +2 every 2lM fitness evaluations.) Initialy the best program in the
population will also be one of the longest but the shortest will catch it up. We
can calculate the expected number of fitness evaluations t needed by setting the
expected best fitness of the longest and shortest programs to be equal. Define
r = lmax/lmin then

2
√
lmin + t/lmin = 2

√
lmax + t/lmax ⇒ t = 2 1−r−0.5

r−1 l
3/2
max

If target is small then it will be found first by one of the longest pro-
grams, otherwise by one of the shortest. Substituting t we get the critical tar-
get value targetcrit = 2

(
r−r−0.5

r−1

)√
lmax. If target is less than the critical

value the number of fitness evaluations expected to solve the problem is about
Mlmax(target− 2

√
lmax) and Mlmin(target− 2

√
lmin) otherwise.

Parallel First Ascent With first ascent mutation in a population it is natural
to consider a generational approach in which every offspring is produced by
exactly one point mutation. The M new individuals then become candidates to
be members of the new population. Note this finer level of granularity removes
the speed advantage of shorter programs seen with steepest ascent (previous
section). In fact longer programs now have a modest advantage since as fitness
climbs the chance of making a successful point mutation falls more slowly than
it does for the shorter programs, cf. derivation of Equation (1).

With tournament selection we would expect rapid convergence of program
sizes towards that of the fittest individual in the initial population. (With a large
population we expect this to be the longest length in the initial population.)
I.e. the average program size will grow towards lmax in ≈ logT M generations.

If the selection pressure is high (T � 2l/n− ≈ 6) then we can be reasonably
sure each generation at least one of the T children of the best individual in the
population will have been formed by mutating a decrement instruction into an
increment instruction, increasing its output by 2 compared to its parent. Thus
the same number of generations, target/2 −

√
lmax, will be needed to solve the

problem, as are needed by steepest ascent. The number of fitness evaluations
will be M(target/2 −

√
lmax). If the fittest is not quite so dominant, after each

improvement is found their may be a gap generation where the next improvement
is not found or a smaller improvement in fitness is found. The existing best will
spread through the population, giving it about T 2 copies on average in the

5



next generation, making it much more likely a +2 fitness improvement will be
found. Hence target/2 −

√
lmax is a reasonable estimate even for more modest

tournament sizes.
In the second selection scheme (in which every program gets exactly one

child, which is the same length as it) there will be no change in average pro-
gram size. The second selection scheme means each slot in the population is
independent and so hill climbs in parallel but in isolation. Taking into account
the expected best fitness in the initial generation (≈ 2

√
lmax) in Equation (1),

gives the average number of fitness evaluations required to solve the problem
as ≈ −2Mlmax log(2

√
1− 3 (target− 2

√
lmax)/4lmax − 1). With M searches in

parallel we can expect one lucky one to find a solution before the others. If this
were included, the number of fitness evaluations would be reduced by O(M

√
t).

Where target� lmax the number of fitness evaluations to reach target is about
3/2 M(target− 2

√
lmax), cf. Approximation (1).

Notice that even though we have used a single genetic operator on the same
fitness function, i.e. a single fitness landscape, we have seen many different be-
haviours. Small differences in the sequence of fitness evaluation, selection and
replacement can lead to macroscopic changes. “One operator, One landscape”
[Jones, 1995] is not sufficient to explain evolution.

4 Bit Flip Computer

Our second example is the bit flip computer. It contains N bits of memory and
N + 1 instructions, one no op and N instructions which read their memory cell
and invert it. All N bits can be used during a program’s execution but only
the m bits of the output register (which overlap the input register) are used for
output when the program stops. Like the cyclic computer, it can only implement
2m functions and in the long program limit each are equally likely. However they
need only contain 1

4 (N + 1)(log(m) + 4) random instructions to be close to the
uniform limit, rather than an exponentially large number for the cyclic computer
[Langdon, 2002a].

If we follow any program by 1
4 (N + 1)(log(m) + 4) randomly chosen instruc-

tions its new fitness will effectively be uncorrelated with its original fitness.
Adjacent pairs of instructions flipping the same bit can be stripped out of the
random addition with no effect. Each remaining random i,j pair has the same ef-
fect as replacing an i instruction in the original program with a j instruction. (If
the program did not contain any i instructions, two can be created by mutating
a pair of two other instructions, which need not be adjacent, into i instructions.)
I.e. no more than 1

4 (N + 1)(log(m) + 4) independent point mutations are needed
to scramble any bit flip computer program’s fitness.

Unlike the cyclic computer, many point mutations have no effect. Of the
N(N +1) mutations from one instruction to another, (N −m)(N +1−m) affect
only the N − m bits of memory not used by the output register and so have
no effect on the value output by the program. 2m(N + 1−m) invert one bit of
the output register, while the remaining m(m − 1) invert two output bits (see
Fig. 1).

6



1

m

N

1 m N

Fig. 1. Effect of point mutation
on bit flip computer programs.
Original instruction (rows) v.
new instruction (columns). White
– not a mutation or no effect,
light grey – 1 bit flipped, dark –
2 output bits flipped.

1

m

N

1 m N
no op

Fig. 2. Acceptance by first ascent hill
climber. White – not a mutation or not ac-
cepted, light grey – accepted if no. new in-
structions is even, dark – accepted if no.
old instructions was even. Inside bold square
mutation will change fitness by two bits, else-
where only one.

For concreteness we define the fitness function to be given uniquely by the
function implemented by each program. For this computer, this is equal to the
value returned by the program when given input zero. Which in turn is given by
counting the number of instructions flipping bits 1 . . .m. Call each of these Ci,
and then the formula for fitness is fitness =

∑m
i=1(Ci mod 2)2i−1. In the long

program limit, each fitness is equally likely, so the mean fitness is 2m−1 − 0.5
with variance

√
(22m − 1)/12 (SD ≈ 0.5774 2m−1).

The fitness neighbourhood under point mutation of a program depends upon
the relative number of each of the instructions from which is made, i.e. not just
on its fitness. For example, a program of 2N no ops will have fitness 0 and can
be mutated to fitness 0, 1, 2, 4, ...2m. (Looking at the top row of Fig. 1 we see
the probability of no fitness change is (N − m)/N and that of each change is
1/N .) While another program with N pairs of each bit flip operations will also
have fitness 0. It too can be mutated to fitness 0 (cf. both lower white areas in
Fig. 1, probability ((N −m)/N)2), and to 1, 2, 4, . . . 2m. (Each 1 bit change has
probability (1 + 2(N − m))/N2, cf. light grey in Fig. 1). But also to fitnesses
3, 5, 6, 9, 10, . . . (2m−1 +2m). (Each 2 bit change has probability 2/N2, dark grey
in Fig. 1). These two examples show, that the current fitness of a program is not
sufficient to define either its neighbours or the probability of moving between
particular points on the fitness landscape.

4.1 Bit flip computer – Steepest Ascent
We start with a randomly chosen program of length l (l ≥ m). About half the
Ci will be odd. Guided by the fitness function, steepest ascent hill climbing will
take about m/2 complete steps to find a program with maximum fitness 2m−1.
Each step takes lN fitness evaluations. I.e. we expect to reach the optimum in
1
2 lmN fitness evaluations. If we chose an initial program of exactly the minimum
length (l = m) then the effort is minimised 1

2m
2N .

7



4.2 Bit flip computer – First Ascent

Again we start with a randomly chosen program of length l. For simplicity we
will assume exactly m/2 of Ci (1 ≤ i ≤ m) are odd. Otherwise the instructions
are uniformly chosen. We make random point mutations one at a time. After
each the offspring’s fitness is calculated and the mutation is accepted if its fitness
is greater than before. See Fig. 2.

If l � m we can assume that even as the search proceeds and changes are
made to the program, the proportion of each instruction remains nearly uniform.
Therefore each of the N(N + 1) possible mutations (cf. Fig. 1) remain equally
likely. However the chance of a mutation being accepted falls as more instructions
become correctly paired. Unless both the instruction being replaced and the
one replacing it affect the output register (i.e. both lie inside the inner square
of Fig. 2) the chance of acceptance will remain proportional to the number
bits unset in the fitness value. Inside the square, mutations affect two bits of
the fitness. Accepted mutations may set them both or set the larger one but
clear the smaller. For simplicity we ignore the second possibility, this means we
will slightly over estimate the average number of mutations needed to reach a
solution.

The probability of an accepted mutation which increases the number of
C1≤i≤m which are odd by one is even

m
2m(N+1−m)
N(N+1) . Where even is the number

of C1≤i≤m which are even. While the chance of an accepted mutation increasing
the number of Ci which are odd by two is about

(
even
m

)2 m(m−1)
N(N+1) . Combining gives

the average reduction in the number of mismatched I/O flips per mutation as

≥ 2
even
m m(N+1−m)+( even

m )2
m(m−1)

N(N+1) . So the expected number of fitness evaluations
required to find a solution is

≤ N(N + 1)
2

1∑
even=m/2

1
even
m m(N + 1−m) + ( even

m )2m(m− 1)

=
N(N + 1)

2

1∑
even=m/2

1
even
m m(N + 1−m)

− 1
even
m m(N + 1−m) + m2(N+1−m)2

m(m−1)

≈ N(N + 1)
2(N + 1−m)

(
H
(m

2

)
−H

(
m

2
+
m(N + 1−m)

(m− 1)

)
+H

(
1+

m(N + 1−m)
(m− 1)

))
H is the Harmonic Number, H(x) =

∑x
i=1 1/i. If x � 1, H(x) ≈ log x+ γ,

where γ is Euler’s constant (≈ 0.57721566). So assuming N � m � 1, the
expected number of fitness evaluations required to find a solution is about
1
2N log(0.8905362 m). Note this means on average first ascent requires fewer
fitness evaluations than than steepest ascent.

5 Any Irreversible Computer

By an “irreversible” computer we mean that there is a program which when run
with two or more inputs yields the same answer. I.e. it is impossible to run the

8



program backwards from its output to uniquely determine what input it was
initialy given. Practical computers are irreversible2.

Consider two or more identical copies of a computer. They run copies (or
mutated copies) of the same program and their clocks are synchronised. They
may have different initial conditions but we shall show after running a long
randomly chosen program they will all become synchronised. Once two such
computers are synchronised they will remain synchronised (unless one of them
strikes a mutation).

We strengthen our definition of “irreversible” to require that for every pair
of states there exists a computer program which when run on two computers,
each starting in one of the states, will eventually cause both to be in the same
state at the same time. Define a as being the length of the longest (over all pairs
of states) such minimal program.

Suppose we chose a program at random and evaluate its fitness, i.e. run it on
each of T fitness cases. Then we mutate it and evaluate the fitness of its offspring.
In both cases the computer goes through a random sequence of states until the
program reaches its last instruction and halts. For an arbitrary mutation, after
a instructions past the mutation site, it is possible that both programs will
arrive at the same state. (By definition, at least one of the Ia, sequences of a
instructions, will do this.) In which case, they will remain synchronised and so
output the same value. If for each fitness case, they always synchronise then they
will have the same overall fitness.

If the mutation is followed by a instructions the chance the two programs will
finish in the same state is at least I−a. Suppose that just before the mutation
site, over the T pairs of runs, the computers are in T ′ distinct states (T ′ ≤ T ). If
the mutation is followed by T ′a instructions, the chance the two programs will
finish together in the same state when run in T pairs is at least T ′!I−T

′a. If the
mutation is followed by i random instructions the chance of being in different
states for at least one input is no more than (1−T ′!I−T ′a)bi/T

′ac. For a program
of length l the average chance of a mutation causing a fitness change is no more
than

≤ 1
l

∑l−1
i=T ′a(1− T ′!I−T ′a)bi/T

′ac < T ′aIT
′a

l

(
1− (1− T ′!I−T ′a)l/T

′a
)

The average chance of a point mutation changing the fitness of a long average
program falls at least in proportion to its length. For any irreversible computer,
and any fitness function, almost all (i.e. at least 90%) point mutations on pro-
grams longer than 10 TaITa have no effect.

5.1 Average Fitness on Any Computer

We shall show on any irreversible computer almost all programs are useless.
Again we run each of the T fitness cases on T copies of the same program
running on identical computers. If the program is chosen at random and is at
least a instructions long then there is a chance of at least (T −1)I−a that two of
2 In contrast quantum computers are reversible.

9



the computers will yield the same output. If we make it aT instructions long the
chance all T computers are synchronised is at least (T−1)!I−Ta. So the chance of
not returning a constant is less than 1− (T − 1)!I−Ta. For programs of length
l ≥ Ta the chance of not returning a constant is ≤ (1− (T − 1)!I−Ta)bl/Tac.
Setting this to 10%, taking logs and rearranging gives a lower bound, meaning
almost all programs longer than 2.3 TaITa/(T − 1)! when run all T fitness cases
the program will yield the same output. If the fitness testing is exhaustive, (all
2n tests are run) then on any irreversible computer almost all programs longer
than 2.3 2naI2na/(2n − 1)! ≈ 0.85 a(2.718 Ia/2n)2n have zero fitness.

6 Average Computer

In the previous sections we have been treating the computer as a machine whose
state is given by its memory and movement between those states is controlled
by instructions in its instruction set. In two cases we have considered a specific
class of computers and this prescribed their instruction set, while in the other
we have set very loose restrictions on the computer to derive general limits for
all computers. We define an average computer as one that is representative of
all the computers with linear programs (no loops), a fixed memory N bits and
fixed number of instructions I. The trick is to realise that a random change is
by far the most likely of all the possible ways an instruction could change the
computer’s memory. I.e. the average computer contains I instructions each of
which makes fixed but random changes to the value held in its memory.

On the average computer point mutation is very disruptive. Changing a single
instruction means that just after the mutation the state of a computer running
the parent program and that of one running the mutation are totally uncorre-
lated.

6.1 Fitness of the Average Computer Program
Here we take a very high level definition of fitness. We say if a program is
run on T test cases and yields T ′ different answers then its fitness is T ′. As
before we set up T copies of the computer and program, all running in lock
step. Assume 2N � 2m � T � 1. If l ≤ 2N/(T − 1) then on average all of
the T computers are in different states and so the expected fitness f is T . If
l is between 2N/(T − 1) and 2N/(T − 1) + 2N/(T − 2) then on average two of
them are in the same state so f is T − 1. In general, if l ≤ 2N

∑i=T−1
i=T ′−1 1/i then

f ≥ T ′. Approximating this sum (the Harmonic number) with the logarithm
and rearranging gives the expected fitness f ≈ 1 + (T − 1)e−l/2

N

, indicating
on average fitness falls exponentially with program length. (This is consistent
with the expected length at which programs become independent of their inputs
(log(T − 1) + γ)2N [Langdon, 2002b, 4.2].)

6.2 Average computer – Point mutation

Suppose we set up T pairs of identical computers running in lock step. Initialy
all run the same program. Now suppose we make the same point mutation to
one program of each pair. As the computer pairs run, initialy they will be in

10



the same state but overall we expect the total number of different states to
start at T and then fall exponentially (as described Sect. 6.1). Suppose at the
point of mutation, the total number of different states of the 2T computers is
T ′. Just after the point where the programs run into the mutation, it is very
likely that each pair will separate so doubling the total number of different states
to 2T ′. However if the programs run on after the mutation site, the number of
different states falls exponentially. Averaging across all l mutation sites, we can
approximate the expected number of different states following a point mutation
(at instruction x) when a program of length l terminates as

1
l

∫ l

0

1+
(
1+2(T − 1)e−x/2

N
)
e−(l−x)/2Ndx = 1+2(T − 1)e−l/2

N

+
2N

l

(
1−e−l/2

N
)

≈ 1 +
2N

l
if l� 2N

In small programs (l � 2N ) this is approximately 2Te−l/2
N

. I.e. on average a
single point mutation to a short program is very disruptive but for very long
programs its impact on the program’s fitness falls as O(l−1).

6.3 Non Reversible Computer – Crossover

Two point crossover between two average programs essentially means inserting
a randomly selected code fragment into one program and the corresponding
fragment into the other parent. The situation is slightly more complex than
with point mutation. For example the length of the code changed aught to be
considered. However on the average machine, inserting a random code fragment
will have much the same effect as a single random instruction change.

With uniform crossover even with very long programs there will be coding
changes near each end of the program. The effect becomes very similar to re-
placing the whole of the parent program with another randomly selected one.
Therefore we would expect no correlation between the outputs of the parent
and child program. In the case of the average computer, the expected number of
different outputs they produce with T input test cases will be the same. (Since
it is given by their length, which, depending upon the crossover operator, will
be the same.) I.e. with this fitness function, we expect their fitness to be about
the same.

7 Conclusions

We have proved general results. Fitness landscapes do converge. Most programs
are useless, and mutating them is unlikely to improve them. How do we recon-
cile this with GP? How do we progress? Here the results have been for linear
non reversible programs, which loose information. However other representa-
tions, which do not (e.g. tree GP, reversible computing and linear GP with
inputs write protected) also converge. Nor should we hope to concentrate of pro-
grams smaller than the convergence threshold, since this can still be a very large
number of programs.

11



1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 2 4 6 8 10 12 14 16 18 20 22

Fr
eq

ue
nc

y

Copies of Function at end of program

e-x/4

Mean first order
e-x/2

Mean Second order
e-x

Mean Parity

Fig. 3. Proportion of programs (1000 instructions, 128 bits) containing multi-
ple copies of each function. The functions fall into four classes, constants (not
shown), copies of inputs, second order and parity.

How does Nature do it? When we look at evolved organisms we see tremen-
dous reuse of partial solutions, hierarchies and modularity. Most programs are
amorphous. The fitness landscape as a whole is dominated by these useless pro-
grams. If the fitness landscape metaphor is to help, like any map, it needs to
concentrate on routes to where we want to be. May be future analysis will shed
light on the structure of good programs and the route map created by crossover.

Acknowledgements I would like to thank Ben Dias.

References
Banzhaf et al., 1998. Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.

Francone. Genetic Programming – An Introduction. Morgan Kaufmann.
Clergue et al., 2002. Fitness distance correlation and problem difficulty for genetic

programming. In GECCO 2002, pp 724–732, New York, 9-13 July 2002.
Daida et al., 2001. Jason M. Daida, et al.. What makes a problem GP-hard? Genetic

Programming and Evolvable Machines, 2(2):165–191, June 2001.
Goldberg and Deb, 1991. A comparative analysis of selection schemes used in genetic

algorithms. In G. J. E. Rawlins, editor, FOGA, pp 69–93. Morgan Kaufmann.
Jones, 1995. Terry Jones. One operator, one landscape. Technical Report SFI TR

95-02-025, Santa Fe Institute, January 1995.
Kinnear, Jr., 1994. Kenneth E. Kinnear, Jr. Fitness landscapes and difficulty in genetic

programming. In WCCI, pp 142–147, Orlando, 27-29 June 1994. IEEE Press.
Langdon and Poli, 2002. W. B. Langdon and Riccardo Poli. Foundations of Genetic

Programming. Springer-Verlag, 2002.
Langdon, 2002a. Convergence rates for the distribution of program outputs. In

GECCO 2002, pp 812–819, New York, 9-13 July 2002. Morgan Kaufmann.
Langdon, 2002b. W. B. Langdon. How many good programs are there? How long are

they? In Jonathan Rowe, et al. editors, FOGA VII. Morgan Kaufmann.
Langdon, 2003. W. B. Langdon. The distribution of reversible functions is Normal. In

Rick Riolo, editor, GP Theory and Practise. 2003. Forthcoming.
Muhlenbein and Schlierkamp-Voosen, 1993. Predictive models for the breeder genetic

algorithm. Evolutionary Computation, 1(1):25–49, 1993.
Nikolaev and Slavov, 1998. Concepts of inductive genetic programming. In W.

Banzhaf, et al. editors, EuroGP, LNCS 1391, pp 49–60. Springer-Verlag.

12

http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
http://www.santafe.edu/sfi/publications/Working-Papers/95-02-025.ps
http://ieeexplore.ieee.org/iel2/1125/8059/00350026.pdf?isNumber=8059
http://ieeexplore.ieee.org/iel2/1125/8059/00350026.pdf?isNumber=8059
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_foga2002.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_foga2002.pdf

	Introduction
	Size of Neighbourhood -- Point Mutation
	Cyclic Computer -- Point Mutation Neighbourhood
	Hill Climbing with Point Mutation -- Cyclic Computer
	Population Approaches -- Cyclic Computer

	Bit Flip Computer
	Bit flip computer -- Steepest Ascent
	Bit flip computer -- First Ascent

	Any Irreversible Computer
	Average Fitness on Any Computer

	Average Computer
	Fitness of the Average Computer Program
	Average computer -- Point mutation
	Non Reversible Computer -- Crossover

	Conclusions

