
GECCO’2002 W. B. Langdon, et. al., editors, pages 812–819, New York, 9-13 July, Morgan Kaufmann

Convergence Rates for the Distribution of Program Outputs

W. B. Langdon
Computer Science, University College, London, Gower Street, London, WC1E 6BT, UK

W.Langdon@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon

Tel: +44 (0) 20 7679 4436, Fax: +44 (0) 20 7387 1397

Abstract

Fitness distributions (landscapes) of pro-
grams tend to a limit as they get bigger.
Markov chain convergence theorems give gen-
eral upper bounds on the linear program sizes
needed for convergence. Tight bounds (ex-
ponential in N , N logN and smaller) are
given for five computer models (any, aver-
age, cyclic, bit flip and Boolean). Mutation
randomizes a genetic algorithm population in
1
4 (l + 1)(log(l) + 4) generations. Results for
a genetic programming (GP) like model are
confirmed by experiment.

1 INTRODUCTION

We have shown that the fitness distribution of suffi-
ciently large programs will converge eventually [Lang-
don and Poli, 2002]. We now use standard results from
Markov chain theory, to give quantitative bounds on
the length of random linear genetic programs, such
that the distribution of their outputs is independent
of their size. The bounds depend heavily on the type
of computer, the fitness function, and scale with the
size of the computer’s memory. Proving general con-
vergence rates for the fitness of programs requires de-
tailed consideration of the interaction within random
programs between different input values. In some cases
we can do this, while in others we leave this for future
work.

The next section summarises the Markov model of lin-
ear genetic programming (GP). Sections 3.1–3.5 de-
scribe a wide range of models of computers for running
linear GP and prove their convergence properties. Sec-
tions 3.1 and 3.2 highlight the importance of internal
coupling. Section 3.3 and 3.4 use Markov minorization
to prove upper bounds for, firstly any computer (3.3)

and secondly average computers (3.4). Section 3.5 is
close to some practical GP systems [Banzhaf et al.,
1998], while Section 3.6 gives an interesting result on
the convergence of bit string genetic algorithms. The
application of our results are given in Section 4 and
we conclude in Section 5.

2 MARKOV MODELS OF
PROGRAM SEARCH SPACES

[Langdon and Poli, 2002] deals with both tree based
and linear GP. For simplicity we will consider only
large random linear programs. However we anticipate
similar bounds also exist for large random trees.

In the following models, the computer is split in two.
The random program and all control circuitry form one
part, while the computer’s data memory, inputs and
outputs form the second. The memory is treated as a
finite state machine (FSM) with 2N states. (Where N
is the number of bits of data in the machine.) Each
time a program instruction is executed, data are read
from the memory, the result is calculated and written
into the memory. This changes the pattern of bits
inside the memory. This is modelled as moving the
FSM from one state to another. This is deterministic.
Given a bit pattern and an instruction, the bit written
to memory is also fixed. That is, given a particular
state, executing a particular instruction will always
move the FSM to the same state. Of course, in general,
executing a different instruction will move the FSM to
a different state.

Before starting a program, the memory is zeroed and
the inputs are loaded1. As each instruction in the pro-
gram is executed, the FSM is updated. If the program
is l instructions long, the memory (FSM) is updated
l times and then the program halts. The program’s

1Some practical GPs, e.g. Discipulus, write protects the
inputs.

812

http://www.cs.ucl.ac.uk/staff/W.Langdon

answer is then read from the memory. I.e. the output
is determined by the last state reached by the FSM.

If there are I instructions then there are I l possible
programs of length l. Suppose we calculate each one’s
fitness by running it on a fix set of tests and then
compare its answers with the tests’ target values. The
fitness distribution is given by plotting a histogram
of the number of programs (divided by I l) with each
fitness value. [Langdon and Poli, 2002] shows, for big
enough l, the distribution for one length is pretty much
the same as for any another.

It is usually impractical to generate every program of
a given length. Instead we consider a large randomly
drawn sample of the possible programs. To generate a
random program of length l, we simply choose at ran-
dom l times from the instruction set. When this pro-
gram is executed, the FSM (i.e. the computer’s mem-
ory) is updated randomly at each step. But note that
the FSM can only move to one of a small number of
possible states at each step. Which ones are possi-
ble depends only on its current state. These are the
conditions for a Markov process.

Provided it is possible for a program to set any pattern
of bits and there is an instruction which leaves a bit
pattern unchanged (no-op), then the Markov process
will converge. These conditions mean the FSM is con-
nected, i.e. it is possible to move, in a finite number
of steps, from any state to any other. The require-
ment for at least one no-op keeps the maths simple
later by avoiding cycles but its not fundamental. If
these conditions hold, then the process of randomly
updating the FSM is a Markov process with nice lim-
iting properties. For example, this means if we run the
process for long enough (i.e. execute enough random
instructions) the probability of the FSM being in any
particular state will be a constant. I.e. the probability
does not change as more random instructions are exe-
cuted. (Although it may depend upon which state we
are considering.) Secondly it does not depend on how
the FSM was started. Since the program’s answer is
read from the memory, it is determined by the FSM
final state. I.e. the probability of any particular an-
swer being given by a random sequence of instructions
does not depend on how many instructions there are
(provided there are sufficient). As the probability is
independent of starting conditions, which include the
program’s inputs, it does not depend on them either.
However if the inputs are write protected, then they
are external to the computer’s data memory. In which
case changes to the inputs have to be considered as
changes to the state machine and hence may change
the limiting distribution of its outputs.

This convergence applies to the whole of the com-
puter’s memory. We expect shorter random programs
(i.e. fewer instructions) to be needed if less memory is
used. Therefore, depending upon the type of the com-
puter, we might expect much shorter programs to be
sufficient to give convergence of just the (small) output
register. Indeed, in some cases, we can prove this.

3 CONVERGENCE RESULTS

3.1 SLOW CONVERGENCE EXAMPLE

[Rosenthal, 1995] gives several results on the number
of random steps needed by a Markov process to reach
equilibrium. In this section we chose what appears
to close to a worst case, in order to show an exam-
ple where the random programs have to be very long
indeed. The example is a frog’s random walk around
a circle of W lily pads. At each time step, the frog
can only jump clockwise, anti-clockwise or stay still.
[Rosenthal, 1995] uses Markov analysis to show that
after sufficient time steps the frog may be found on any
lily with equal probability (1

W) and to show O(W 2)
steps are needed before the chance of any of them be-
ing occupied is approximately the same.

We shall use the total variation distance between two
probability distributions to indicate how close they
are. The total variation distance between probabil-
ity distributions a and b is defined as ||a − b|| =
supx⊆χ |a(x)−b(x)|. I.e. the largest value (supremum)
of the absolute difference in the probabilities [Rosen-
thal, 1995]. The sup is taken over all subsets, i.e. every
possible grouping of states x, not just single points.
(Otherwise it would be small as long as a(x) and b(x)
are both always small, even if the distributions a and
b are not similar).

Suppose there are three instructions: do nothing, add
one to memory and subtract one from memory. We
have carry over from one memory word to the next and
wrap around if all memory bits are set or all are clear.
This corresponds to the frog jumping from lily pad W
to 1 or 1 to W . (Remember the lilies are arranged in
a circle.) Part of the memory is loaded with inputs
and part designated the output register. (Read only
inputs are not permitted in this example.)

[Rosenthal, 1995] shows that the actual probability
distribution µl after l random instructions is exponen-
tially close for large l to the limiting distribution π (in
which each of the 2N states is equally likely). Actually
(if there more than two bits of memory, i.e. N > 2)
we have both lower and upper bounds on the maxi-
mum difference (sup) between the actual distribution

813

of outputs of length l random programs and the uni-
form 2−N distribution:

1
2

(
1− 4π2

3 22N
l

)
≤ ||µl − π|| ≤

√√√√ e−
4π2

3 22N l

1− e−
4π2

3 22N l

That is the programs have to be longer than O(22N) for
the distribution of FSM states to be very close to the
limiting distribution. E.g. to make ||µl − π|| < 0.1 the
lower bound says l must exceed 0.8 3

4π2 22N, while the
upper bound says it need not exceed log(101) 3

4π2 22N .
For a computer with 1 byte of memory, programs with
between 4,000 and 23,000 random instructions need to
be considered before each state is equally likely.

The output is read from part of the whole computer’s
memory (the m bit output register). Since in the limit
each of the 2N states is equally likely, each of the 2m

possible answers is also equally likely. The special in-
struction set means, the distribution of answers takes
just as long to converge as does the whole of the com-
puter. This is despite the fact that the output register
only occupies a fraction of the whole of the computer.

The output of any program is x + p mod 2m, where
x is the input and p is a constant (specific to that
program). Note this computer can only implement 2m

functions. The probability distribution of functions
clearly follows the distribution of outputs. So when l
is long enough to ensure each output is equally likely,
then so too is each function.

In general, the distribution of program fitnesses will
also take between 0.06 22N and 0.35 22N to converge
(assuming large N). Of course specific fitness func-
tions may converge more rapidly.

3.2 FAST CONVERGENCE EXAMPLE

The second example also uses results from [Rosenthal,
1995] (Bit flipping) [Diaconis, 1988, pages 28–30]. As-
sume a computer with N bits of memory and N + 1
instructions. The zeroth instruction does nothing (no-
op) while each of the others flips a bit. I.e. executing
instruction i, reads bit i, inverts it and then writes
the new value back to bit i. Again input (n bits) and
output (m bits) registers are defined (and read only
inputs are forbidden).

Once again the limiting distribution is that each of
the states of the computer is equally likely. How-
ever the size of programs needed to get reason-
ably close to the limit is radically different. Only
1
4 (N + 1)(log(N) + c1) program instructions are re-
quired to get close to uniform [Diaconis, 1988, page 28]
[Rosenthal, 1995]. In fact, for large N , it can also

be shown that, in general, convergence will take more
than 1

4 (N + 1)(log(N)− c2) instructions.

Using the upper bound and setting c1 ≥ 4 will ensure
we get sufficiently close to convergence. Since then
||µk − π|| ≤ 10%. I.e. random programs of length
1
4 (N + 1)(log(N) + 4) will be enough to ensure each
bit of the computer is equally likely to be set as to be
clear, regardless of the programs’ inputs. (Section 3.5
explains why c1 = 4 is sufficient.) Again in the limiting
distribution each state is equally likely.

Returning to our computer with 1 byte of memory,
programs with no more than 14 random instructions
are needed to ensure each state is equally likely.

Only m/(N + 1) bit flips actually effect the output, so
1
4 (N + 1)(log(m) + 4) random instructions will suffice
for the each of the 2m outputs to be equally likely (cf.
Section 3.5).

Assume s bits are shared by the input and output reg-
isters. We can construct a truth table for each pro-
gram. It will have 2s rows. (The non-overlapping
bits of the input register are discarded.) The zeroth
row gives the output of the program (in the range
0 . . . 2m − 1) when all s bits of the input register are
zero. Each bit of the row is equal to the number of
times the corresponding memory bit has been swapped
by the program, modulo two. Each of 2s−1 other rows
is determined by the zeroth row. I.e. the complete
table and hence the complete function implemented
by a program, is determined by its output with input
zero. Therefore 1) for large programs, each of the 2m

functions is equally likely and 2) the distribution of
functions converges with the distribution of outputs.
Finally the distribution of program fitnesses converges
at least as fast. However, since a given fitness function
need not treat each of the m output bits equally, its
limiting distribution need not be uniform and it can
converge faster.

This suggests 9 random instructions will be enough to
ensure the output of a 1 byte Boolean (i.e. one bit)
computer is random. Further that every Boolean fit-
ness function will also be close to its limiting distribu-
tion. Note this does not depend upon the number of
input bits n (although n cannot exceed 8 of course).

3.3 ANY COMPUTER

This section gives a quantitative upper bound on the
convergence of the distribution of outputs produced by
any computer which fits the general framework given
in Section 2.

The general Markov minorization condition [Rosen-
814

thal, 1995] is fairly complex. Fortunately for this proof
(and Section 3.4) we can use a simplified special case.

Define Pij to be the probability that starting in state i
the next operation will take us to state j. (If j cannot
be reached from i in one move, then Pij = 0.) The
complete matrix P formed from all the Pij is known as
the transition matrix. A simple Markov minorization
condition is that there is at least one state which can
be reached from all the others in one step. That is,
there is at least one column of the transition matrix P
whose entries are all positive (not zero). Given this the
corresponding Markov chain converges geometrically
quickly [Rosenthal, 1995].

||µk − π|| ≤ (1− β)k

where
β =

∑
y=1..2N

min
x=1..2N

P (x, y)

I.e. β is the sum of the minimum values of the entries
in each column of P .

All fine and dandy, however, there are 2N elements
in each column of P but only a small number I of
possible instructions. Thus there will be at least 2N−I
elements in each column of P that are zero. Thus
β = 0. This does not mean that the Markov process
will not converge or even that it will take a long time.
It just means the simple application of a minorization
condition does not take us very far.

One way round this difficulty is to replace P by P k

in the minorization condition. This means, instead of
looking at the available state transitions if each of the
I instructions is used once, we consider the transitions
possible when they are used k times. For any given
state there are up to Ik states the FSM could be in
after k instructions. (Ignoring overlaps, each is equally
likely.) So if Ik ≥ 2N it is now possible that in at least
one column of P there will be no zero entries.

From the way that we constructed our computer, it is
possible, eventually, to move from the starting state s0

to any state y. Let a be the number of steps required.
This meets the minorization condition for P a. In fact
P a(s0, y) ≥ I−a > 0 ∀y. Therefore β ≥ I−a and so for
any computer:

||µk − π|| ≤ (1− I−a)bk/ac

Setting || · || to 10% yields a convergence length k for
any computer with I instructions k ≤ 2.3025851aIa.
Where a is the number of instructions to reach any
state. (a < 2N).

3.4 AVERAGE COMPUTER MODEL

Suppose given any possible data in memory each of
the I instructions independently randomises it.

Thus for any state x P (x, y) = 0 or 1/I or 2/I
or . . . or I/I. Most elements of the transition ma-
trix P (x, y) will be zero but between 1 and I elements
in each column will be non zero. The chance of any
given P (x, y) being zero is (1− 2−N)I .

Consider two instructions chosen at random.
P 2(x, y) = 0, or 1/I2 or . . . or 2I/I2. The chance
of any given element of P 2(x, y) being zero is
(1− 2−N)2I .

For l instructions, each element of P l(x, y) will be a
multiple i (possibly zero) of I−l. The values of i will
be randomly distributed and follow a binomial distri-
bution with p = 1/2N , q = 1− p and number of trials
= IN . So the distribution of i’s mean is I l/2N and its
standard deviation is

√
I l × 1/2N × (1− 1/2N). For

large I l the distribution will approximate a Normal
distribution. If I l � 2N , even for large 2N , practi-
cally all i will lie within a few (say 5) standard devi-
ations of the mean. I.e. the smallest value of i in any
column will be more than I l/2N − 5

√
I l × 1/2N . So

β will be at least 2NI−l(I l/2N − 5
√
I l × 1/2N). I.e.

β ≥ (1− 5
√
I−l × 2N).

Let α = 5
√
I−l × 2N . So β ≥ (1 − α). Next chose a

particular value of l so that α is not too small. E.g.
set α = 0.5 so β ≥ 0.5.

α = 5
√
I−l × 2N√

I−l × 2N = α/5
0.5(−l log I +N log 2) = log(α/5)

l =
−2 log(α/5) +N log 2

log I

Now we have a practical value of β we can use the
minorization condition on P l to give

||µk − π|| ≤
(

1− (1− 5
√
I−l × 2N)

)bk/lc
=

(
5
√
I−l × 2N

)bk/lc
= αbk/lc

Choosing a target value of ||µk − π|| of 10% gives:

αbk/lc ≥ ||µk − π|| = 0.1
bk/lc logα ≥ −2.3025851

k ≤ −2.3025851 l
logα

=
−2.3025851 (−2 log(α/5) +N log 2)

logα log I815

=
−2.3025851 (2 log 10 +N log 2)

− log 2 log I

k ≤ 15.298044 + 2.3025851 N
log I

(1)

Note this predicts quite rapid convergence for our ran-
domly wired computer. E.g. if it has 8 instructions
k ≈ 7 + N . That is for a one byte 8 random instruc-
tion computer programs longer than 16 will be close
to the computer’s limiting distribution.

Inequality (1) bounds the length of random programs
need to be to ensure, starting from any state, the whole
computer gets close to its limiting distribution. Again
we define parts of the memory as input and output
registers. Each program’s output is given by m output
bits.

Due to the random interconnection of states, on av-
erage we can treat each of the 2m states associ-
ated with the output register as projection of 2N−m

states in the whole computer, so Inequality (1) be-
comes k ≤ (15.298044 + 2.3025851 m)/log I. E.g. for
Boolean problems (m = 1). Only about 9 random in-
structions are need for an 8 random instruction com-
puter to have effectively reached the programs’ outputs
limiting distribution.

As in Section 3.2, we can construct a look up table for
a particular program which contains the value it yields
for each input. It will have 2n rows, each of which can
have one of 2m values. As in Section 3.2, the relation-
ship between each row is determined by the program.
However, the more powerful architecture means that
each row can have an apparently independent value.
So there are (2m)2n possible tables (and hence 2m×2n

possible functions). For a given input (i.e. row in the
lookup table) each output is equally likely. If each
row were independent then every complete table (and
hence each function) would be equally likely. A loose
argument says, we can fill the table by running k ran-
dom instructions and storing the output register in
the table. We then re-use the current contents of the
memory (first noting the contents of the input regis-
ter). We run another k random instructions. This
yields another random output value, which is effec-
tively independent of the first. This is stored in the
table row corresponding to the intermediate value of
the input register. It will take at least 2n such opera-
tions to fill the table but each row will be independent
and so each of the 2m×2n possible tables will be equally
likely. I.e. running O(2nm/log I) random instructions
will ensure each function is equally likely (cf. no free
lunch, NFL [Wolpert and Macready, 1997]). Finally
the distribution of program fitness’ will also have con-
verged by this point (though its distribution need not

be uniform and, for a specific fitness function, it may
have converged more quickly).

While such a random connection machine might seem
perverse, and we would expect it to be hard for a hu-
man to program, on the face of it, it could well be
Turing complete (taking into account its finite mem-
ory). However since it lacks any particular regularities,
we would anticipate random search to be as effective
as any other technique (such as genetic programming)
at programming it.

3.5 FOUR BOOLEAN INSTRUCTION
COMPUTER

This model is the closest to actual (linear) GPs. The
CPU has 4 Boolean instructions: AND, NAND, OR
and NOR. Before executing any of these, two bits of
data are read from the memory. Any bit can be read.
The Boolean operation is performed on the two bits
and a one bit answer is created. The CPU then writes
this anywhere in memory, overwriting what ever was
stored in that location before.

Note the instruction set is complete in the sense that,
given enough memory, the computer can implement
any Boolean function.

As before, we look at the distribution of memory pat-
terns that are produced by running all programs of a
given length, l, by considering a large number of ran-
dom programs of that length. I.e. programs with l
randomly chosen instructions.

Each time a random instruction is executed, two mem-
ory locations are (independently) randomly chosen.
Their data values are read into the CPU. The CPU
performs one of the four instructions at random. Fi-
nally the new bit is written to a randomly chosen mem-
ory location.

Now it considerably simplifies the argument to note
that the four instructions are symmetric. In the sense
that no matter what the values of the two bits read are,
the CPU is as likely to generate a 0 as a 1. That is,
each instruction has a 50% chance of inverting exactly
one bit (chosen uniformly) from the memory and a
50% chance of doing nothing. Thus we can update the
analysis in Section 3.2 based on [Diaconis, 1988, pages
28–30] and [Rosenthal, 1995].

||µl − π||2 ≤ 1
4

N∑
j=1

N !
j!(N − j)!

∣∣∣∣1− j

N

∣∣∣∣2l (2)

=
2
4

dN+1
2 e∑
j=1

N !
j!(N − j)!

(
1− j

N

)2l

816

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 v

ar
ia

tio
n

di
st

an
ce

Program length

 8 bits
16 bits

32 bits

64 bits

128 bits

Figure 1: Convergence of outputs of random 3 bit
Boolean (AND, NAND, OR, NOR) linear programs
with different memory sizes. Note the agreement with
upper bound

√
1/2(exp(me−2l/N)− 1) (dotted lines).

<
1
2

∞∑
j=1

N j

j!
e−

2j
N l

||µl − π||2 ≤ 1
2

(
eNe

− 2
N l − 1

)
Requiring ||µl−π|| not to exceed 10% gives the upper
bound l ≤ 1

2N(log(N) + 4). That is, programs need
only be twice as long on this computer (which is capa-
ble of real computation) as on the simple bit flipping
computer of Section 3.2.

In this computer the chance of updating the output
register is directly proportional to its size. So the num-
ber of instructions needed to randomised the output
register is given by its size (m bits). But we need to
take note that most of the activity goes on the other
N −m bits of the memory. Therefore Inequality (2)
becomes

1
4

m∑
j=1

m!
j!(m− j)!

∣∣∣∣1− j

N

∣∣∣∣2l
which leads to l ≤ 1

2N(log(m) + 4). Figure 1 confirms
this.

On this computer, the output of a program given one
input is strongly related to its output with another
input. This means the loose lookup table argument of
Section 3.4 breaks down. The distribution of functions
does converge (albeit more slowly than the distribution
of outputs) but in the limit each of the 2m×2n possible
functions are not equally likely (see Figure 2). Detailed
modelling of this is left to further work.

How long it takes for a fitness distribution to con-
verge will depend upon the nature of the fitness func-

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400 450 500

P
ro

po
rt

io
n

of
 P

ro
gr

am
s

Program length

0

Even-3 Parity 7 Hits
Even-3 Parity 6 Hits
Even-3 Parity 5 Hits

TVD of Function distribution

Figure 2: Convergence of Even-3 parity fitness. Even
in the limit some functions are more common than
others. Longer programs are needed to achieve conver-
gence of functions than of outputs, (Figure 1, 8 bits)

tion. Once its function distribution has converged, the
fitness distribution must also converge. However, it
could require substantially shorter programs.

3.6 CONVERGENCE IN BIT STRING GAs

The bit flipping model (in Section 3.2) is very close
to standard mutation in bit string genetic algorithms
(GAs). The principle difference is in GAs the num-
ber of bits flipped follows a Poission distribution (unit
mean is often recommended [Bäck, 1996]). Thus 0.38
(rather than 1/(l + 1)) of chromosomes are not mu-
tated and 0.26 (rather than zero) chromosomes have
two or more bits flipped. (In this section, the length of
the bit string chromosome is denoted by l.) Ignoring
these differences, it takes only 1

4 (l+ 1)(log(l) + 4) mu-
tations to scramble a chromosome from any starting
condition.

It is no surprise to find asymptotic bounds of O(l log(l))
reported before [Garnier et al., 1999], but note that
1
4 (l + 1)(log(l) + 4) is quantitative and does not re-
quire l→∞. Also it is a reasonably tight bound in
the sense that replacing “+4” by a modest negative
constant leads to a lower bound. However we include
this section mainly because the answer comes straight
from standard results without hard work.

Since each chromosome in a GA population is mu-
tated independently, the time taken to scramble an en-
tire GA population is scarcely more than to scramble
each of its chromosomes. Crossover makes the analysis
more complex but since it moves bit values rather than
changing them, we do not expect it to radically change
the time needed [Gao, 1998]. E.g. for a GA population

817

of 32 bit strings, mutation alone (note we turn off se-
lection) will scramble it within about 61 generations.
(For standard mutation the value may be slightly dif-
ferent.) Notice this is independent of population size,
in contrast the number of generations taken by selec-
tion to unscramble the population depends on the size
of the population but not l [Blickle, 1996]. According
to [Bäck, 1996, Table 5.4] binary tournament selection
(without mutation or crossover) takes only 9 genera-
tions to remove all diversity from a population of 100.

4 APPLICABILITY

The results in Section 3 refer to specific types of com-
putation, nevertheless we feel they are useful, particu-
larly for common varieties of genetic programming.

The model does not cover programs that contain in-
structions that are executed more than once. I.e. no
loops or backward jumps. (Forward jumps are in prin-
ciple acceptable, as long as the number of executed
instructions remains large.) This is, of course, a big
restriction. However, many problems have been solved
by GP systems without such loops or recursive func-
tion calls [Banzhaf et al., 1998]. The difficulty for the
proofs is that, in general, repeating (a sequence of) ran-
dom instructions does not give, on average, the same
results as the same number of random instructions
chosen independently. (If the loop contains enough
random instructions to reach the limiting distribution
then the problem does not arise because the input to
the next iteration to the loop is already in the limiting
distribution and so will remain there.) Similarly, there
is no problem if the loop is followed by a large number
of random instructions.

While the proofs suggests that the program will halt
after l instructions, they can be made slightly more
general by extracting the answer from the output reg-
ister after l time intervals, allowing the program to
continue (or to be aborted). These have been called
“any time algorithms”. They have been used in GP,
e.g. [Teller, 1994].

The dominant factors in determining length required
for near convergence are the type of computer consid-
ered and the size of its (data) memory. The scaling
law is given by the type. Comparing the four types in
Section 3 suggests that the degree of interconnections
in the state space is the important factor. The ability
to move directly from one memory pattern to another
leads to linear scaling, while only being able to move
to 2 adjacent data patterns lead to exponential scal-
ing. We suggest that the “bit flipping” and “4 Boolean
Function” models are more typical and so we suggest

O(N logN) would be found on real computers.

Most computers support random access at the byte or
word level. This would suggest N should be the num-
ber of bytes or words in the data memory. However
then we would expect the individual bits in each byte
or word to be highly correlated, and so we would an-
ticipate the simple O(N logN) law would break down.
I.e. further random instructions will be required to ran-
domise them. This might result in a multiplicative
factor of 8 log 8 or 32 log 32 but this yields the same
scaling law ((8 log 8)N/8 logN/8 = O(N logN)) pos-
sibly with different numerical values.

Some linear GP systems write protect their inputs.
The proofs can be extended to cover this by viewing
the read-only register as part of the CPU (i.e. not part
of the data memory). Then we get a limiting distribu-
tion as before, but it depends on the contents of the
read-only register, i.e. the programs’ input. In general
we would expect this to give the machine a very strong
bias (i.e. an asymmetric limiting distribution) and in
some cases this might be very useful.

All of the calculations in Section 3 have been explicitly
concerned with the distribution of answers produced
by the programs and the functions implemented by
them. In principle we can use the Markov arguments
to consider the distribution of functions implemented
by the programs in other types of computer. The
Markov process now becomes a sequence of changes
in function. We start with the identity function and
the distribution of functions rapidly spreads through
the 2N

2N

functions. An obvious difficulty is that the
size of the transition matrixes increases exponentially
(from 2N × 2N to 2N

2N× 2N
2N

). This might lead to
an exponential (or worse) increase the upper bound
scaling laws.

The random computer (cf. Section 3.4) gives an in-
teresting model. Indeed it represents the average be-
haviour over all possible computers (of this type).

Finally an alternative view is to treat random instruc-
tions as introducing noise. Some instructions, e.g.
clear, introduce a lot of noise, while others e.g. NAND,
introduce less. So we start with a very strong, noise
free, signal (the inputs) but each random instruction
degrades it. Eventually, in the limiting distribution,
there is no information about the inputs left. Thus
the entropy has monotonically increased from zero to
a maximum.

818

5 CONCLUSIONS

The distribution of outputs produced by all comput-
ers converges to a limiting distribution as their (linear)
programs get longer. We provide a general quantita-
tive upper bound (2.31aIa, where I is the number of
instructions and a is the length programs needed to
store every possible value in the computer’s memory,
Section 3.3). Tighter bounds are given for four types of
computer. There are radical differences in their con-
vergence rates. The length of programs needed for
convergence depends heavily on the type of computer,
the size of its (data) memory N and its instruction set.

The cyclic computer (Section 3.1) converges most
slowly, ≤ 0.35 22N , for large N . In contrast the bit flip
computer (Section 3.2) takes only 1

4 (N+1)(log(m)+4)
random instructions (m bits in output register). How-
ever in both, the distributions of outputs and of func-
tions converge at this same rate to a uniform limiting
distribution.

In Section 3.4 we introduced a random, model of com-
puters. This represents the average behaviour over all
computers (cf. NFL [Wolpert and Macready, 1997]).
It takes less than (15.3 + 2.3m)/ log I random instruc-
tions to get close to the uniform output limit. However
a less formal arguments suggests a multiplicative fac-
tor of 2n needs to be included before the distribution
of functions is also close its limit.

Section 3.5 shows the output of programs comprised
of four common Boolean operators converges to a uni-
form distribution within 1

2N(log(m) + 4) random in-
structions. The importance of the pragmatic heuristic
of write protecting the input register, is highlighted,
since without it there are no “interesting” functions in
the limit of large programs.

Section 3.6 shows the number of generations
(1

4 (l + 1)(log(l) + 4)) needed for mutation alone to
randomise a bit string GA (chromosome of l bits).

Practical GP fitness functions will converge faster
than the distribution of all functions, since they typ-
ically test only a small part of the whole function.
Real GP systems allow rapid movement about the
computer’s state space and so appear to be close to
the bit flipping (Section 3.2) and four Boolean in-
struction (Section 3.5) models. We speculate rapid
O(|test set|N logm) convergence in fitness distribu-
tions may be observed.

It is ten years since Jaws 1, these are the first general
quantitative scaling laws on the space that genetic pro-
gramming searches. They provide theoretical support
for some pragmatic choices made in GP.

Acknowledgments

I would like to thank Jeffrey Rosenthal, David Corney,
Tom Westerdale, James A. Foster, Riccardo Poli, Ingo
Wegener, Nic McPhee, Michael Vose and Jon Rowe.

References

[Bäck, 1996] Thomas Bäck. Evolutionary Algorithms
in Theory and Practice: Evolution Strategies, Evo-
lutionary Programming, Genetic Algorithms. Ox-
ford University Press, New York, 1996.

[Banzhaf et al., 1998] Wolfgang Banzhaf, Peter
Nordin, Robert E. Keller, and Frank D. Francone.
Genetic Programming – An Introduction; On the
Automatic Evolution of Computer Programs and
its Applications. Morgan Kaufmann, 1998.

[Blickle, 1996] Tobias Blickle. Theory of Evolution-
ary Algorithms and Application to System Synthe-
sis. PhD thesis, Swiss Federal Institute of Technol-
ogy, Zurich, November 1996.

[Diaconis, 1988] Persi Diaconis. Group Representa-
tions in Probability and Statistics, volume 11 of Lec-
ture notes-Monograph Series. Institute of Mathe-
matical Sciences, Hayward, California, 1988.

[Gao, 1998] Yong Gao. An upper bound on the
convergence rates of canonical genetic algorithms.
Complexity International, 5, 1998.

[Garnier et al., 1999] Josselin Garnier, Leila Kallel,
and Marc Schoenauer. Rigorous hitting times
for binary mutations. Evolutionary Computation,
7(2):173–203, 1999.

[Langdon and Poli, 2002] W. B. Langdon and Ric-
cardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[Rosenthal, 1995] Jeffrey S. Rosenthal. Convergence
rates for Markov chains. SIAM Review, 37(3):387–
405, 1995.

[Teller, 1994] Astro Teller. Genetic programming, in-
dexed memory, the halting problem, and other cu-
riosities. In Proceedings of the 7th annual Florida
Artificial Intelligence Research Symposium, pages
270–274, Pensacola, Florida, USA, May 1994. IEEE
Press.

[Wolpert and Macready, 1997] David H. Wolpert and
William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, April 1997.

819

http://www.csu.edu.au/ci/vol05/gao/grateGao.html
http://www.csu.edu.au/ci/vol05/gao/grateGao.html
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps

	INTRODUCTION
	MARKOV MODELS OF PROGRAM SEARCH SPACES
	CONVERGENCE RESULTS
	SLOW CONVERGENCE EXAMPLE
	FAST CONVERGENCE EXAMPLE
	ANY COMPUTER
	AVERAGE COMPUTER MODEL
	FOUR BOOLEAN INSTRUCTION COMPUTER
	CONVERGENCE IN BIT STRING GAs

	APPLICABILITY
	CONCLUSIONS

