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Abstract- We use evolutionary computation (EC) to
automatically find problems which demonstrate the
strength and weaknesses of modern search heuristics.
In particular we analyse Particle Swarm Optimization
(PSO) and Differential Evolution (DE). Both evolution-
ary algorithms are contrasted with a robust determinis-
tic gradient based searcher (based on Newton-Raphson).
The fitness landscapes made by genetic programming
(GP) are used to illustrate difficulties in GAs and PSOs
thereby explaining how they work and allowing us to de-
vise better extended particle swarm systems (XPS).

1 Introduction

Particle Swarm Optimisation (PSO)[Kennedy and Eber-
hart, 2001] is based on the collective motion of a flock of
particles: the particle swarm. In the simplest (and origi-
nal) version of PSO, each member of the particle swarm
is moved through a problem space by two elastic forces.
One attracts it with random magnitude to the best loca-
tion so far encountered by the particle. The other attracts
it with random magnitude to the best location encountered
by any member of the swarm. The position and velocity of
each particle are updated at each time step (possibly with
the maximum velocity being bounded to maintain stability,
cf. Sections 2.2 and 3.3) until the swarm as a whole con-
verges to an optimum.

Following Kennedy’s graphical examinations of the tra-
jectories of individual particles and their responses to vari-
ations in the key parameters[Kennedy, 1998] the first real
attempt at providing a theoretical understanding of PSO was
the “surfing the waves” model presented by Ozcan and Mo-
han [Ozcan and Mohan, 1999]. Shortly afterwards, Clerc
and Kennedy[Clerc and Kennedy, 2002] developed a com-
prehensive 5-dimensional mathematical analysis of the ba-
sic PSO system. A particularly important contribution of
that work was the use and analysis of a modified update
rule, involving an additional constant,k, the “constriction
coefficient”. If k is correctly chosen, it guarantees the sta-
bility of the PSO without the need to bound velocities.

Differential Evolution (DE) is a very popular population-
based parameter optimisation technique[Storn and Price,
1995; Price, 1999; Storn, 1999b]. In DE new individuals
are generated by mutation and DE’s crossover, which cun-
ningly uses the variance within the population to guide the
choice of new search points. Although DE is very powerful
[Lampinen and Zelinka, 1999], there is very limited theo-
retical understanding of how it works and why it performs
well [Zaharie, 2003].

In spite of some theoretical contributions[van den

Bergh, 2001], we still do not have an adequate understand-
ing of why certain parameter settings, or certain variants of
the basic form, perform better or worse than other PSOs (or
other optimisers) on problems of a given type. The same
also holds for DE. The conventional approach to this situ-
ation, which is common to other families of optimisers, is
to study the performance of various algorithms on a subset
of a standard suite of problems, attempting to find the rea-
sons behind relative success or failure. Unfortunately, the
observed differences may be small, making it difficult to
discern the source and nature of the differences. The tech-
nique introduced here turns this idea on its head:instead
of studying the performance of two optimisers on a stan-
dard problem in the hope of finding an informative degree
of difference, we evolve new problems that maximise the dif-
ference in performance between the optimisers. Thus the
underlying strengths and weaknesses of each optimiser are
exaggerated and thereby revealed.

The next section explains how we use genetic program-
ming to evolve fitness landscapes and gives details of three
optimisers, which are tested against each other in Section 3.
Sections 4 and 5 summarise our results and describe the
conclusions that they lead us to.

2 Method

The method we use is similar to[Langdonet al., 2005],
where we mostly used it to investigate particle swarm op-
timisation, whilst here we are concerned to compare PSO
with other optimisers. As before we use the standard form
of genetic programming (GP)[Koza, 1992; Langdon, 1998;
Langdon and Poli, 2002] to evolve problems on which one
search technique performs radically better or worse than an-
other. We begin with a GP population in which each indi-
vidual represents a problem landscape that can be searched
by each of the two techniques. In each generation, the fit-
ness of an individual is established by taking the difference
between the search performances of the two techniques on
the function represented by the individual. With this ap-
proach, GP will tend to evolve benchmark problems where
one technique outperforms the other.

It is important to note that we are using GP as a tool, it
is the landscapes that it produces that are important. These
are the product of single GP runs. However, we consider in
detail the performance of PSO etc. on them and we use mul-
tiple runs of the optimisers to show statistical significance
of the difference in their performance on the automatically
produced landscapes.

To ensure the fitness landscapes are easy to understand,
we restrict ourselves to two dimensional problems (cover-
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Table 1: tinyGP Parameters

Function set: +−×
Terminal set: x, y, 100 constants uniformly randomly

chosen in the range0 . . . 1
Fitness: Landscape points sampled by optimiser A

minus those by optimiser B. A and B
start from same initial random start points.
A and B run 5 times. Individual fitness val-
ues are not fixed but each is re-evaluated in
each parent selection tournament. (Current
fitness is used when selecting who dies).

Selection: Steady state binary tournaments for both
parent selection and who to remove from
the population.

Initial pop: Trees randomly grown with max depth of 4
(root=0).

Parameters: Population 10 or 1000. 10% crossover,
90% mutation 2% chance of mutation per
tree node. Optimiser initial points are cho-
sen uniformly at random from square cen-
tred on origin. Depending on experiment,
−1 . . . + 1 or−10 . . . + 10.

Termination: generation 6 or 10

ing the square -10..10) and values10−5 . . . 1. Outside the
square fitness is defined to be exactly zero. That is, if
f(x, y) is the function evolved by GP, the fitness function
it represents isδ(−10 ≤ x ≤ 10) × δ(−10 ≤ y ≤ 10)
max(10−5,min(f(x, 0, 1)). (The inclusion of values up
to ±10 should readily allow extension to discrete integer
problems.) For simplicity the -10..10 range is divided into
2001 points at which the objective function is defined. So,
on a microscopic level, the search problem is composed of
2001 × 2001 horizontal tiles, each0.01 × 0.01. This is
4 004 001 points, so it is easy to find the global optimum
by enumeration.

The optimisers being compared are run on each land-
scape until either they find a global optimum or they use up
all the fitness evaluations they are allowed. To avoid prob-
lems with floating point arithmetic, finding a fitness value
within 10−5 of the highest value in the landscape is regarded
as having found a solution. Note this applies to all optimis-
ers pairs, e.g. when PSO�DE and when DE�PSO. So it is
neither an advantage nor a disadvantage for any optimiser.

2.1 Details of GP parameter settings

We used a simple steady state[Syswerda, 1990] genetic
programming system, tinyGP, implemented in Java[Poli,
2004]. Details are given in Table 1.

2.2 Details of PSO parameter settings

We used a Java implementation of PSO. The swarm con-
tained 30 particles and was run for up to 1000 generations.
To highlight strengths and weaknesses of the core com-
ponents of PSOs, constriction and friction were not used.
(We will investigate them in future studies.) As with other

optimisers, the initial random starting points were chosen
for both techniques being compared. In most cases they
were chosen uniformly at random from−1 . . . + 1. (The
range−10 . . . + 10 was used in later experiments, Sec-
tion 3.4.) Similarly the initial velocities were chosen from
from−1 . . . + 1 (−10 . . . + 10 in Section 3.4).

It is well known that unless constrained, PSO swarms are
unstable and tend over time to oscillate widely. Two tech-
niques are commonly used to control this: 1) velocity lim-
iting and 2) addition of a “constriction” or damping term.
Initially we took advantage of our knowledge of the land-
scapes to be evolved by GP and used position (rather than
velocity) clamping, to limit the PSO to the−10 . . . + 10
box known to contain the optima. However this might be
felt to be giving the PSO an unfair advantage. So, in later
experiments (Section 3.3 onwards) we reverted to the more
usual velocity clamping and did not allow particle speeds to
exceed 10 in any dimension.

2.3 Details of Newton-Raphson parameter settings

Newton-Raphson is an intelligent hill-climber. If the initial
point is an optimum, it stops. Otherwise it takes two steps.
One in thex-direction and the other in they-direction. From
these measurements of the landscape, it calculates the local
gradient. It thenassumesthat the global maximum will have
a value of 1. (Remember the GP is constrained to generate
values no bigger than 1). From the current value it calcu-
lates how much more is needed to reach an optimal value.
From its estimate of the local gradient, it calculates how far
it needs to move and in what direction. It then jumps to this
new point. If the new point is an optimum, it stops.

It has several strategies to make it more robust. Firstly
the initial step used to estimate the local gradient is large
(1.0). If N-R fails, the step size is halved, to get a better
estimate of the local gradient. Similarly instead of trying
to jump all the way to an optimal value, on later attempts
it tries only to jump a fraction of the way. (On the second
attempt 1/2 way, third 1/4 and so on.) In this way N-R is
able to cope with non-linear problems, but at the expense of
testing the landscape at more points.

Should the step side fall to 0.01, our Newton-Raphson
optimiser gives up and tries another random initial start
point. (E.g. the starting position of the second PSO par-
ticle in the swarm.) N-R continues until either it finds an
optimum or it has used the same number of fitness evalua-
tions as maximum allowed to the other optimiser. (I.e. N-R
cannot exceed (PSO or DE) population size× maximum
number of generations.) This gives a robust optimiser.

2.4 Details of DE parameter settings

Unlike the other optimisers, we did not code our own
implementation of DE. Instead we used Rainer Storn’s
Java implementation of Differential Evolution and followed
his recommendations for parameter settings[Storn, 1999a;
Storn, 2005]. The population was 20, i.e.10×number of
dimensions. We ran DE for up to 1000 generations. The
crossover rate was 90% and the F factor was 0.8. We also
used Storn’s “DEBest2Bin” strategy.
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Figure 1: Cliff edge landscape where PSO outperforms DE.
The gradient leads the DE population (+) to jump lemming
like past the optima at the ridge. So many test points (×)
have zero fitness.

3 Experiments

3.1 PSO v. Unmodified DE

Genetic programming was easily able to find a landscape
where a simple PSO could find a global optimum using
fewer fitness evaluations than Rainer Storn’s Differential
Evolution java code and vice-versa. The evolved landscape
is flat. Every point is an optimum value. Trivially the PSO
code performs better because it performs one fitness eval-
uation and stops. Storn’s code completes the evaluation of
the initial population (twenty points). Thus PSO has a 20:1
advantage.

3.2 PSO v. immediate stopping DE

The DE code was altered, so that like the PSO code, it
stopped immediately on finding a global optimum, rather
than completing the evaluation of the current population.

Again GP finds a landscape which the PSO solves on av-
erage by generation 5 but DE never solves it. See Figure 1.
DE finds this type of “cliff edge” landscape hard because the
gradient on one side continously leads it to over shoot the
global optimum. However we can regard this as GP having
found an unfair comparison because it has placed the optima
exactly at the PSO boundary. When a swarm member over-
shoots it is forced back inside the−10 . . . + 10 box. I.e. it
is placed at an optimum, which solves the problem. Never-
theless the example is informative since it indicatesDE has
a problem with “cliff edge” landscapes.

While this example may appear artificial,[Schoenauer
and Michalewicz, 1996] have suggested that global optima
to constrained problems are often at the boundary between
a smoothly varying feasible region and an infeasible region
(where a constraint is violated). Depending upon how the
constraint is handled, fitness in the infeasible region may
be dramatically lower than in the feasible region. I.e. cliff
edges may be common in constrained problems and so our
results suggest thatDE might not perform well on con-
strained optimisation problems.

Generation 19
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Figure 2: Smooth landscape where PSO outperforms DE.
Both PSO and DE populations start near the origin but DE
population always find local optima at the small ridge and
ignores the huge global optima in the opposite direction.
The PSO always finds one of the best points.

3.3 Velocity Limited PSO

If we remove any PSO advantage, and use velocity clamp-
ing rather than position clamping (see Section 2.2), GP finds
it harder to evolve a landscape suited to PSO. However in-
creasing the GP population size to 1000 (see Table 1), en-
ables GP to find a landscape (see Figure 2) which deceives
DE into going to a local optimum. On average PSO finds
the global optimum in 3 generations. DE never finds it.

This result is important because it shows thatDifferen-
tial Evolution sometimes has a limited ability to move its
population large distances across the search space if the
population is clustered in a limited portion of it.Indeed in
other experiments (not reported) we noted that DE has prob-
lems with the spiral “long path problem”[Langdon and Poli,
2002, page 20]. This may be why Storn’s WWW pages rec-
ommend the initial population should be spread across the
whole problem domain ([Price, 1999, page 85] agrees)1.

3.4 Wide Initial Population

Up to this point we have used the same initial points as
for our PSO, i.e. scattered uniformly at random across the
square−1 . . . + 1 centred on the origin. In the experiments
described in Sections 3.4.1–3.4.6 we extended the initial
population to the whole−10 . . . + 10 region. (We still use
the same initial points for the PSO, DE and the other op-
timisers.) Again GP needed a larger population (1000) but
managed to evolve a landscape where PSO outperforms DE.

3.4.1 PSO beats DE

The landscape evolved by GP is given in Figure 3. Using
starting positions and seeds neither PSO nor DE had seen

1 The reasons for DE getting stuck may be due to lack of movement
opportunities.[Lampinen and Zelinka, 2000] calls this “stagnation”. How-
ever they say “stagnation is more likely to occur” with “small population
size (� 20)”, while we have observed slow movement with larger popula-
tions as well.
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Figure 3: Landscape where PSO outperforms DE. Both
PSO and DE initial populations are widely scattered. The
central parabolic spike is given by0.009x(0.44 − x). In
this run the DE population converges toward one edge of
the legal region (generations 800-899). Later it finds the
spike by chance and then climbs its peak. PSO, being more
stochastic, seems to have fewer problems stumbling into it
by chance.

during GP’s evolution, the PSO was approximately three
times more likely to solve the evolved problem using fewer
fitness evaluations than DE. (In 50 runs, PSO won 36, DE
13 and they exactly tied once, p (two tailed sign test) =
0.0026. Mean 324 v. 424 evaluations.)

Again this landscape (Figure 3) is very instructive.In
the absence of landscape structure(the landscape is largely
flat), DE tends to expand its search. This reduces its abil-
ity to find isolated optima in the original search region.
Note Storn’s DE java implementation follows[Price, 1999,
page 86]’s recommendation and, after initialisation, does
not limit the search. Instead Figure 3 shows the fitness func-
tion is effectively bounding DE’s search to the legal region.

3.4.2 PSO beats Newton-Raphson

GP readily evolves a landscape where our particle swarm
optimiser beats our Newton-Raphson optimiser, see Fig-
ure 4. In fact it is the same landscape as it finds when asked
to evolve a problem where DE beat Newton-Raphson (see
Section 3.4.4). In 50 runs (with new starting positions) PSO
and N-R always solved the problem but our PSO signifi-
cantly outperformed our Newton-Raphson, on average eval-
uating 13.7 v. 75.9 points in thex3 − x2 landscape. This
happens because approximately half the search space has
low fitness and is flat. Newton-Raphson wastes many fit-
ness evaluations where there is no gradient before giving up
and restarting. In contrast the problem is easily solved by
PSO and Differential Evolution initial random populations.
So again, our method gives useful information emphasising
a weakness of gradient search.

3.4.3 DE beats PSO

With a population of 1000, GP evolved a landscape (see
Figure 5) on which Differential Evolution does consistently

5 DE solutions
5 DE samples

landscape

-15 -10 -5 0 5 10 15
X1 -15

-10
-5

0
5

10
15

X2
0

0.2

0.4

0.6

0.8

1

Objective

Figure 4: Evolved landscapex3 − x2. PSO and DE readily
outperform Newton-Raphson.
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Figure 5: Evolved landscape0.0003(0.11+x+0.7y) show-
ing points explored by Differential Evolution.

(and significantly) better than our PSO. In 50 runs DE al-
ways solved it, taking on average 4 400 evaluations. Whilst
PSO solved it only 6 times (within 1000 generations). The
mean of the successful runs was 633 generations (19 000
evaluations).

It is clear that DE suffers again from the “cliff edge”
problem, cf. Section 3.2, taking on average 221 generations
to find the optimum. However, unlike Figures 1 and 3, there
is a unique global optimum (occupying2.5 10−7 of the fea-
sible search space). This target proves to be too small for
our PSO, which seldom finds it exactly.This shows a weak-
ness of thestandardPSO: the particles are unable to home
in on “narrow” global optima.

3.4.4 DE beats Newton-Raphson

GP (with a population of 10) readily finds a landscape where
Differential Evolution consistently beats gradient search. In
fact it is the samex3 − x2 landscape as it used when PSO
defeated N-R (see Section 3.4.2). This suggests that the
x3− x2 landscape in Figure 4 is generally a problem where
most population based algorithms would beat N-R.
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Figure 6: Evolved landscape.011 + .077x(1− x)− .075y
showing points explored by Newton-Raphson. Note arrows
in the planez = 0 where gradient search fails. However
eventually N-R is restarted within the parabolic region with
a gradient and (on the occasion shown) climbs it to one of
the three global optima (“End”). To avoid clutter, in the path
“Start”–“End” only successful moves are shown. The target
occupies7.5 10−7 of the feasible search space and proves
to be too small for our PSO, cf. Figure 8.

3.4.5 Newton-Raphson beats PSO

With a population of 1000, GP evolved the landscape shown
in Figures 6–8. In 50 runs, using starting points chosen in-
dependently from those used by the GP, our gradient based
searcher did significantly better than our PSO. In every run
N-R found the global optimum (x = 0.5, y = −10), while
the PSO was never able to find it.

Due to the flat top of the parabola there are three0.01×
0.01 tiles within 10−5 of the maximum value. Reaching
any of them is regarded as solving the problem. The PSO
samples a point very near the optimum but the particles’
energy continues to increase. So, as time progresses, our
PSO searches ever wider on this landscape, cf. Figure 8.
I.e. the swarm samples points further and further from the
optimum. This is interesting (although not unknown):a
PSO without constriction or friction can focus its search for
only a limited number of iterations.If the optimum is not
found in that time, the PSO is unlikely to find it later. This
is the opposite of a GA, which tends to focus its search in
later generations, rather than expand it.

3.4.6 Newton-Raphson beats DE

With a population of 1000, GP evolved the parabolic prob-
lem shown in Figures 9 and 10. In 50 runs, using start posi-
tions chosen independently from those used by the GP, N-R
significantly outperformed DE. N-R took on average 164
evaluations and always solved the problem, whilst DE re-
quired on average 3 200 but only solved it 43 times out of
50.

The bi-modal nature of the landscape means both opti-
misers are quite likely to head towards the lower ridge line
(at x = −10, z = 0.43). However N-R wins over popu-
lation based approaches because: 1) it ascends the gradient
faster and 2) it stops when it reaches the lower hill top and
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Figure 7: Last four successful steps in gradient based op-
timiser Newton-Raphson. (Same example as Figure 6.)
Dashed arrows at right angles to each other indicate N-R’s
sampling of the problem landscape in order to estimate the
local gradient. Using this, it then guesses where the global
optimum is. Arrows 1, 2, and 3 show cases where it over es-
timated the distance to be travelled and passed they = −10
boundary. Following each unsuccessful jump, N-R halves
its step size and re-estimates the local gradient. Successful
jumps are shown with solid arrows.
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Figure 8: All points with fitness> 10−5 sampled by PSO
in first run (Same landscape as Figures 6 and 7.) By genera-
tion 13 the Swarm best lies within 0.001 of the global best.
However it does not improve. Of the first30× 100 particle
locations, only 248 lie in the> 10−5 region, 108 from gen-
erations 100 to 199 and 75 after generation 200. In fact, the
swarm (remember we are not using either position clamping
or constriction) becomes increasingly energetic and more
and more dispersed.
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Figure 9: A run of gradient based optimiser. Dashed arrows
at right angles to each other indicate N-R’s sampling of the
problem landscape,0.0047(x+1)(x−0.38), in order to es-
timate the local gradient. After 15 fitness evaluations, N-R
abandons its first start position (near (0,10)). However using
only another 30 fitness evaluations it successfully climbs to
an optimum from its second starting point. Arrows 1, 2, 3,
and 4 show cases where it over estimated the distance to be
travelled and passed thex = 10 boundary, cf. Figure 7.

restarts from another random position. Restarting virtually
guarantees N-R will find the right ridge (x = 10, z = 0.5).

Again this landscape, Figures 9 and 10, is very interest-
ing. It emphasises the differences in the strategy used to
deal with local optima by N-R and DE. A hill-climber with
restarts, deals with them by finding them and restarting. A
population based algorithm (such as DE) deals with non-
global optima by assuming they will have smaller basins
of attraction than the global optimum. When this is true,
most members of the population are more likely to sample
the neighbourhood of the global optimum and so they can
pull the whole population towards it. If the basins of attrac-
tion of local and global optima have almost identical sizes
(like the landscape evolved by GP) this strategy may fail. In
fact the problems where population based algorithms per-
form the worst, deceptive problems, non-global optima have
have much bigger basins of attraction than that of the global
optimum. This example showsGP has automatically dis-
covered the notion of deception for Differential Evolution.

4 Discussion

A summary of our results (based on Sections 3.4.1–3.4.6) is
given in Table 2.

It is a strength of our method that it is has not been nec-
essary to set up a “fair” comparisoninside the GP fitness
function. The evolved fitness landscapes very clearly show
the different strengths of the optimisers. Where one opti-
miser becomes stuck on an evolved landscape, increasing
the number of generations from 1000 to 1500 or more will
not substantially alter the comparison when the other tech-
nique takes on average 8 generations and solves it every
time.

DE run 0, all 54 evals
DE run 3 gen 1000
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Figure 10: A successful (+) and a non successful (×) DE
run on same landscape as Figure 9. In the successful run
DE only evaluated 54 points. In contrast in the other run
DE ascends the slightly lower hill and gets stuck at the top
of it. × show the points evaluated during the last generation.

Rather than using predefined benchmarks it proved easy
for genetic programming to find a simple landscape where
evolution beats gradient search. (Simply by removing the
gradient). Similarly GP with tiny populations (10) was able
to find landscapes to fill most of the other niches in Table 2
(optimiser v. optimiser). However examination of several
of them showed the difference in performance was not nec-
essarily dramatic. In these cases GP was run again with a
more common population size (1000).

Run time depends heavily on a number of factors. These
include the computer used and which of the optimisers are
being compared, their population sizes (1, 20 or 30), the
number of generations they are allowed (up to 1000), the
size of the genetic programming population (10 or 1000)
and the number of GP generations (10). (Figures in brack-
ets indicate values used in Section 3.) Nevertheless to give
an indication of the costs of our technique, we note that the
smallest GP run with the fastest heuristic (N-R) took about
a minute on a 3GHz PC. The longest run with a population
100 times bigger took 32 hours. Doubtless, if needbe, these
times could be greatly reduced by suitable code optimisa-
tion and/or parameter tuning.

5 Conclusions

Theoretic analysis of evolutionary algorithms in general,
and particle swarm optimisers and differential evolution in
particular, is very hard. While we have not abandoned
this, it is clear that evolutionary computing itself can help
our understanding. We have shown genetic programming
by forcing alternative techniques to compete inside a sin-
gle computer (rather than scattered across the pages of di-
verse conferences and journals) can readily produce exam-
ples which illustrate their comparative strengths and weak-
nesses, cf. Table 2.
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Table 2: Summary of Landscapes evolved in Section 3.4
Particle Swarm Optimisation (PSO) Differential Evolution (DE) Newton-Raphson (N-R)

PSO – GP population 1000 Section 3.4.1
Figure 3. PSO’s more expansive
search is more likely to find the cen-
tral spike (occupying≈ 1% of the
feasible region). While DE tends to
be less expansive than a PSO.
Figure 2, of Section 3.3, gives an

example where DE’s more directed
search is deceived by a local optima,
whereas the PSO readily picks up on
the bigger signal issued by the large
global optimum.
Possible problems with DE (such

as “stagnation” [Lampinen and
Zelinka, 2000] etc see Section 3.3)
many not have arisen since the DE
population is not small (we us a
DE population of 20) and the initial
population covers the whole feasible
search space. However Section 3.3
notes concerns that sometimes
DE populations after converging
may have limited ability to move a
distance.

GP population 10 Section 3.4.2
Figure 4. Gradient based search
fails when there is no gradient.

DE GP population 1000 Section 3.4.3
Figure 5. Here we did not use “con-
striction” in the PSO, this allows it
to search widely. However it makes
it less able to focus its search and
home in a small high fitness target.
In Section 3.4.3 GP exploits this and
creates a problem with a tiny tar-
get area. DE is able to use the gra-
dient information to locate the tar-
get. However, due to the “cliff edge”
(cf. Section 3.2) DE takes a long
time.

Generally DE tends to fall over
“cliff edges” and so may find dif-
ficulties optimising heavily con-
strained problems.

– GP population 10 Section 3.4.4
Figure 4. Gradient based search
fails when there is no gradient.

N-R GP population 1000 Section 3.4.5
Figures 6–8. Both N-R and PSO are
hampered by the large area without
a gradient. PSO can come close to
the optima quickly but, without con-
striction, friction or position limit-
ing, the swarm becomes increasingly
erratic and the stable swarm best is
not sufficient to keep the swarm near
the optimal region.

GP population 1000 Section 3.4.6
Figures 9 and 10. The evolved
landscape is smooth, allowing gra-
dient based search to reach the op-
tima more quickly than population
search. However GP reinforces this
advantage by making the population
multi-modal. This benefits our N-R,
since it rapidly restarts on reaching
a local optimum. While DE may be
deceived into heading in the wrong
direction.

–
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