
14th Belgian-Dutch Conference on Artificial Intelligence (BNAIC’02) 21-22 Oct 2002, Leuven,

Belgium, Hendrik Blockeel (ed.)

Size of Random Programs to ensure Uniformity

W. B. Langdon

Computer Science, University College, London,
W.Langdon@cs.ucl.ac.uk

http://www.cs.ucl.ac.uk/staff/W.Langdon

Abstract

Fitness distributions (landscapes) of programs tend to a limit as they get
bigger. Markov chain convergence theorems give general upper bounds on
the linear program sizes needed for convergence. Tight bounds (exponential
in N , N logN and smaller) are given in [1] for the outputs of five computer
models (any, average, cyclic, bit flip and Boolean). Mutation randomises a
genetic algorithm population in 1

4
(l + 1)(log(l) + 4) generations. While [2]

considers convergence of functions. We restate the results 1
2
N(log(m) + 4)

and O(N)–O(N3/2) for a genetic programming (GP) like model.

If we generated a large number of random programs and measured their char-
acteristics (such as the value they output) this random sample would approximate
the characteristics of all programs (Monte Carlo sampling). Instead of actually
explicitly generating all these programs, we can apply Markov theory of random
processes to random programs, to get properties of the random program and there-
fore bulk properties of all programs.

Using this we proved that the fitness distribution of sufficiently large programs
will eventually converge [3]. However Markov chain theory can also be used to
give numeric estimates of the length of random linear genetic programs, such that
the distribution of their outputs is independent of their size. The size depend
heavily on the type of computer, the fitness function, and scales with the size of
the computer’s memory [1]. We have also considered how big programs must be
to ensure the proportion of functions they implement is close to the limit [2].

Convergence of Boolean Computer Programs

Assume the CPU has 4 Boolean instructions: AND, NAND, OR and NOR. In
each operation, two bits of data are read from the N bits of memory. The Boolean
operation is performed on the two bits, a one bit answer is created and stored in
memory. A random program is simply a sequence of random instructions. I.e. two
random input memory locations, a random choice of one of the four instructions
and a random destination for the output bit.

Note that the CPU is as likely to generate a 0 as a 1. That is, each instruc-
tion has a 50% chance of inverting exactly one bit (chosen uniformly) from the
memory and a 50% chance of doing nothing. Eventually each bit will be equally
likely to be 0 or 1. Using the convergence analysis given in [4, pages 28–30] and [5]

yields ||µl − π||2 ≤ 1
2 (eNe

− 2
N l − 1). Requiring the difference ||µl − π|| between

1

http://www.cs.ucl.ac.uk/staff/W.Langdon

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 v

ar
ia

tio
n

di
st

an
ce

Program length

 8 bits
16 bits

32 bits

64 bits

128 bits

Figure 1: Convergence of out-
puts of random 3 bit Boolean (AND,
NAND, OR, NOR) linear programs
with different memory sizes. Note
the agreement with upper bound√

1/2(exp(me−2l/N)− 1)

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100

P
ro

po
rt

io
n

Program length

D0
Off, On

ND1, ND0, D0, D1

NOR, NAND, AND, OR

12 etc

1, 127, 128, 254

Exponetial decay, a=1.4
Predicted loss of Identity function

Figure 2: Convergence of Boolean func-
tions, as Figure 1 (8 bits). Almost
all programs implement Always-on or
Always-off. Short programs are more
varied and many implement the Identity
function “D0”.

the probability distribution of outputs of program of length l, µl, and the uni-
form limiting distribution, π = 2−N , not to exceed 10% gives the upper bound
l ≤ 1

2N(log(N) + 4). Considering only m output bits gives l ≤ 1
2N(log(m) + 4).

Figure 1 confirms this.
The distribution of functions converges (l � N/m). In the limit, each of the

2m possible constant functions are equally likely, and the proportion of each the
other 2m×2n functions falls exponentially at the same rate, O(l−

√
2/aN3). See

Figure 2. Write protecting the inputs ensures non-trivial functions survive in the
limit of long programs [2].

Once the distribution of functions has converged, the distribution of program
fitness’ must also converge, but it might only need much shorter programs.

References

[1] W. B. Langdon. Convergence rates for the distribution of program outputs. In
W. B. Langdon etal., editors, GECCO-2002. Morgan Kaufmann.

[2] W. B. Langdon. The distribution of boolean functions. In J. Rowe etal., editors,
Foundations of Genetic Algorithms VII, 2002.

[3] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[4] Persi Diaconis. Group Representations in Probability and Statistics, Institute
of Mathematical Sciences, Hayward, California, 1988.

[5] Jeffrey S. Rosenthal. Convergence rates for Markov chains. SIAM Review,
37(3):387–405, 1995.

ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
ftp://cs.ucl.ac.uk/genetic/papers/wbl_gecco2002.pdf
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-42451-2#english

