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Summary.
Genetic programming (GP) is used to extract from rat oral bioavailabil-

ity (OB) measurements simple, interpretable and predictive QSAR models
which both generalise to rats and to marketed drugs in humans. Receiver
Operating Characteristics (ROC) curves for the binary classifier produced
by machine learning show no statistical difference between rats (albeit
without known clearance differences) and man. Thus evolutionary com-
puting offers the prospect of in silico ADME screening, e.g. for “virtual”
chemicals, for pharmaceutical drug discovery.

The discovery, development and approval of a new drug treatment is a major
undertaking (see Table 10.1). Only a small fraction of the drug discovery
projects undertaken eventually lead to a successful medicine. Even successful
programmes can take in the region of 12–15 years.

The discovery of new chemical entities with appropriate biological ac-
tivity is a multi-stage and iteratively focussed search process in which many
thousands of chemicals are measured firstly for primary activity against some
(often novel) disease/therapy related target. The initial active subset subse-
quently becomes slimed down to select suitable candidates for use within the
human body and worthy of expensive further development. The drug discov-
ery process can be thought of as a funnel. The mouth of the funnel is wide
and covers many diverse molecules. Gradually the funnel narrows and the
later stages concentrate upon fewer more similar molecules.

As the directed discovery cycle continues, the criteria for progression be-
come more stringent and complex. This means smaller numbers or classes of
molecules are passed to the succeeding stages. Initialy molecules need only
show some hint of activity against the target in relatively cheap in vitro tests.
Later (early development) stages progress to more expensive and time con-
suming in vitro and in vivo measurements. In vivo measurements are required
to demonstrate good bodily Absorption, Distribution, Metabolism, Excretion
and Toxicity (ADMET) properties.

ADMET testing includes satisfying aspects relating to: 1) metabolism by,
or inhibition of, critical metabolic enzymes (such as cytochrome P450) and
2) the molecule’s ability to reach and stay in areas of the body required to
enable sufficient drug effect to occur before its metabolism/excretion. (These
properties are collectively known as good pharmacokinetics and bioavailabil-
ity.)

Even an approximate in silico (computational) method that can be ap-
plied at an earlier step is very useful. Since it can be used by medicinal
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Table 10.1. Discovery and early development cascade. At each successive stage
in the cascade there is some increase in knowledge, but although the data becomes
of higher quality it relates to a smaller (more specialised) chemical space as the
decision about which chemicals to take forward becomes focussed to a smaller
number of molecular classes and more complex as more factors are introduced.

Exploratory Screening
High/ultra-High Throughput Screening HTS/u-HTS

Primary screening wells contain a single concentration of test chemical and the
target, together with reagents for a “bio-assay”. The assay is designed to show if
the chemical directly binds to the target at all, or can promote some bioactivity
via interaction with the target. Many tens of thousands or even hundreds of
thousands of very diverse chemicals are tested.

IC50/EC50 and early selectivity assays. More refined measurements of primary
target binding/potency involve testing at a number of chemical concentra-
tions to determine the concentration that is needed to reach 50% of maximum
inhibition/activity.
Another set of assays (also known as initial selectivity assays) are designed to
test non-target specific binding/activity for avoiding other (unwanted) effects.
Thousands to many tens of thousands of chemicals are tested, depending upon
earlier “hit” rates, the number of molecular classes with promise for required
activity or modifiability, their collective content (the initial Structure-Activity
Relations information,“early SAR”) and the initial importance of specific se-
lectivities.

“Early Lead”/“Back-up”. Selection of promising molecular classes with the neces-
sary potency and selectivity and which its feasible to mass manufacture. Early
lead/back-up chemicals should allow for their “optimisation” as a drug.

Lead Optimisation

Chemical Programme of Modification
Using “in silico” virtual compound screening (i.e. selecting promising chemicals
based on computer models) and/or more traditional QSAR/“rational” library
design methods and combinatorial chemistry techniques many thousands of
chemicals similar to the lead molecule class are identified and made in the
hope they will have analogous and maybe improved properties.

Molecular class-focussed SAR screening with 1st and 2nd assays
Pharmacological characterisation to improve potency and/or selectivity.

Initial key and “scale-feasible” ADMET related testing in vitro
Permeability, p450 interactions, solubility, etc.
Results are feed back to the “Chemical Modification” stage, leading to an
iterative cycle of chemical design, synthesis and testing.

“Development Candidate” with good potency, selectivity and initial ADMET
Further in vivo and more realistic and extensive ADMET and pharmacokinetic
testing, including bioavailability measurements.
Again results are fed back to an increasingly more fine-tuned “Chemical Mod-
ification” stage.

Finally a compound is fit to be forwarded to first time in man (toxicity, dose-
ranging) studies and subsequent clinical trials, plus supporting knowledge to
be used in developing formulations/treatments.
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chemists to assist them to decide which molecules to progress. The time and
expense required for in vivo testing and its inherently low through-put na-
ture make measuring ADMET properties of the many thousands of chemicals
at the mouth of the funnel infeasible. However poor ADMET characteristics
cause a high failure-rate of molecules in the later stages of drug discovery. An
approximate screen helps ensure better quality molecules advance to ADMET
measurement from earlier stages. That is, in silico screening helps to ensure
the later stages of the drug discovery funnel are not clogged with chemicals
which will ultimately have to be rejected due to their poor ADMET charac-
teristics.

We illustrate the use of genetic programming in drug discovery by using
it to evolve simple, biologically interpretable in silico models of bioavailabil-
ity. Section 10.4 summarises GP, while Section 10.5 introduces ROC curves.
Sections 10.6–10.7 and 10.8 describes the rat and human drug datasets and
method. Our results (10.9), particularly Figure 10.15 on page 230, are dis-
cussed in Section 10.10 before we conclude with Section 10.11. However first
we give the background of using computational, data mining and machine
learning techniques in drug discovery (Sections 10.1 and 10.2) and describe
bioavailability (Section 10.3).

10.1 Computational Drug Discovery

There is a long history of efforts to improve earlier decision-making in the
drug discovery process. This has largely involved Quantitative Structure-
Activity Relationship (QSAR) modelling employing traditional multivariate
statistical techniques (see for example [10.1], while [10.2] gives a current re-
view) and some quite fundamental indicators have arisen [10.3].

QSAR models link chemical’s structure to their pharmacological activity.
They are applicable to both library design (i.e. selection of which chemicals
to keep in a drug discovery “library” or warehouse) and “virtual screening”
(see [10.4]). The predictive performance of QSAR models is typically highly
related to the number and diversity of chemicals that are used in modelling.
This in turn is curtailed by the extent of biological testing that has been done.
(Mostly the data has not been gathered directly to support the modelling
process.)

In more recent years “machine learning” approaches have increasingly
been experimented with (see [10.5, 10.6]) and applied in this area. Although
evolutionary computing techniques, principally genetic algorithms, have been
used for some while [10.7], e.g. in library design [10.8], newer paradigms such
as genetic programming have only more recently been experimented with
[10.9, 10.10] including the prediction of specific properties [10.11, 10.12, 10.13,
10.14, 10.15]. Although there is interest in other computational techniques
[10.16].
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10.2 Evolutionary Computing for Drug Discovery

Evolutionary computing and in particular genetic programming [10.17, 10.18]
is increasingly being used to analyse bioinformatics data. For example re-
cently two workshop series have started (BioGEC in the USA [10.19, 10.20]
and EvoBIO in Europe [10.21]). Recent work also includes Kell [10.22], Moore
[10.23], Iba [10.24] and Koza [10.25].

In the last few years we have used genetic programming in a series of
data mining and modelling experiments. We used GP to fuse together mod-
els generated by other machine learning techniques (artificial neural networks,
decision trees and naive Bayes [10.26, 10.27, 10.28]). This technique has been
used for predicting inhibition of human cytochrome P450 2D6 (an important
enzyme involved with the metabolism of many drugs) and compounds which
might be starting points in drug based disease treatments [10.12, 10.13]. In
a recent comparison, GP was shown to evolve models that best extrapolated
from the available training data [10.14] as well as being understandable. Ini-
tial experiments have also used GP for both feature selection and model
building of gene expression data [10.29].

10.3 Oral Bioavailability

The preferred method of introducing a drug into the body is for the patient
to swallow it by mouth (orally). Hence a very important QSAR problem
is the prediction of human oral bioavailability, %F. (%F is the percentage
of an orally-administered dose reaching the blood stream.) Although some
progress has been made, this task has proven particularly difficult. Typically
false positive rates are quite high [10.4, 10.30, 10.31, 10.32] due to :

– The complex nature of processes underlying bioavailability. Bioavailability
represents, in essence, the overall product of retained drug integrity within
the body (e.g. avoiding high rates of digestion, metabolism in the liver and
excretion via the kidneys). And the drug’s ability to pass through bodily
barriers while retaining its activity until the site of action (the target) is
reached. Bioavailability is also a dose-dependent feature for many drugs.
Obviously there are many physical and chemical processes involved.

– Modelling bioavailability is also hard due to the restricted set of classes of
molecules for which %F measurements are available. This is because oral
bioavailability is usually only measured late in the development process.
So %F in man is normally only available for successfully marketed drugs
or for proto-drugs which failed near the end of the drug discovery process.

Earlier efforts at examining molecular properties in relation to human oral
bioavailability were naturally restricted to human data, but more recently
progress has been made in identifying the importance of certain molecular
properties from more voluminous rat data [10.33, 10.34].
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10.4 Genetic Programming

Essentially genetic programming evolves a population of initialy randomly
created programs using a fitness function to select the better ones to be
parents for children in succeeding generations. The processes of sexual re-
combination and mutation are used to ensure, that while children have some
similarity with previous generations, they are different from them. Using
“survival of the fittest” better programs are produced.

It is common in GP to represent programs as parse trees (Lisp S-
expressions). (Figure 10.8 an page 226 contains an example.) Parse trees have
the great advantage that if one starts with two syntactically correct programs
they can be used as parents of new children by exchanging subtrees between
them (crossing over) and automatically the new programs will also be syn-
tactically correct. Similarly various pruning and grafting operations can be
implemented to mutate trees in such a way that they also give syntactically
correct offspring. With a little practise, one can become adept at interpreting
small trees and so extracting biological inferences from automatically created
models.

GP can be thought of the use of genetic algorithms [10.35] to search the
space of programs for one of the huge number of programs which satisfy some
user requirement. Here the computer programs are all functional models of
chemical properties. In addition to making accurate predictions of chemical
properties, we will also want our models to be readily interpretable. It is
difficult to quantify how interpretable a model is to a particular chemist or
biologist, however, as a first step, it is reasonable to prefer smaller models.
For an introduction into the long history of research into this aspect of genetic
programming see [10.36].

10.5 Receiver Operating Characteristics

This section gives some of the background of Receiver Operating Character-
istics (ROC) curves, while Section 10.5.1 uses ROC curves to explain why
fitness = 1

2True Positive rate + 1
2True Negative rate may be a good choice.

That is, to explain why we use the average error rate rather than the error
rate directly. (Note the two need not be the same when there are different
numbers of training examples in each class. This is quite common.)

ROC curves are a good way to show the trade off a classifier makes be-
tween catching positive examples and raising false alarms [10.37]. Figure 10.9
(page 226) shows some ROC curves. ROC curves plot a classifier’s true pos-
itive rate (i.e. fraction of positive examples correctly classified) against its
false positive rate (i.e. fraction of negative examples which it gets wrong).
All ROC curves lie in the unit square and must pass through two points 0,0
and 1,1. The origin 0,0 corresponds to when the classifiers sensitivity is so
low that it always says no. I.e. it never detects any positive examples. While
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1,1 means the classifier is so sensitive that it always says yes. I.e. it never
makes a mistake on positive examples, but gets all negative cases wrong. A
classifier that randomly guesses has an ROC which lies somewhere along the
diagonal line connecting 0,0 and 1,1. A better than random classifier, has an
ROC above the diagonal. Since an ideal classifier detects all positive cases
but does not raise any false alarms its ROC curve goes through 1,0 (the top
left corner of unit square).

A worse than random classifier has an ROC curve lying below the diag-
onal. It can be converted into better than random by inverting its output.
This has the effect of rotating its ROC curve by 180 degrees, so that the ROC
curve now lies above the diagonal.

Scott [10.38] suggests that the “Maximum Realisable Receiver Operating
Characteristics” for a combination of classifiers is the convex hull of their
individual ROCs, cf. also [10.39]. In [10.38] Scott proves a nice result: it is
always possible to form a composite classifier whose ROC lies at any chosen
point within the convex hull of the original classifier’s ROC. (See Figures 10.1
and 10.2.) Since Scott’s classifier is formed by random combination of the out-
puts, it is not acceptable where decisions have to justified individually, rather
than on average across a group. E.g. some medical applications. Moreover the
convex hull is not always the best that can be achieved [10.40]. Indeed we have
shown GP can in some cases do better, including on Scott’s own benchmarks
[10.27] and several real world pharmaceutical classification tasks [10.11].

It can be shown that the overall discriminative ability of a classifier (as
measured by its Wilcox statistic) is equal to the area under its ROC curve
[10.41]. Thus we have used the area under the ROC (AUROC) to decide
which classifiers to allow to breed and have children in the next generation.
That is, we have used AUROC as the fitness measure.

10.5.1 Simple use of ROC as the Objective to be Maximised

It is not necessary to measure each Receiver Operating Characteristics curve
completely during evolution. Instead some computational savings can be
made by basing the fitness function on measuring only one point on the
ROC. We can still form the convex hull of the ROC, but now it is always
a quadrilateral (see Figure 10.3). Given a little geometry, it can be shown
that the area of the quadrilateral (i.e. the AUROC of the convex hull) is
1
2True Positive rate + 1

2True Negative rate. This gives a very simple formula
for fitness calculation which automatically takes into account class imbal-
ances.

Note again geometry tells us that two points that are equally distant
from the diagonal crossing the ROC square from 0,0 to 1,1 will give rise to
quadrilaterals with the same area and hence have the same fitness. Another
way of looking at this is to consider the cost associated with the classifier.

We assume the costs can be represented as α = cost of a false positive
(false alarm) and β = cost of missing a positive (false negative). Let p be the
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Fig. 10.1. Given two classifiers (A and B) a composite classifier (C) can always be
formed by returning the result of A a fixed fraction of the time and the prediction
given by B otherwise. The Receiver Operating Characteristics of C will lie on a
straight line connecting A and B. By combining with the classifier which always
says no (Z) a composite CZ can be constructed between a real classifier and the
origin (Z). Similarly, a classifier which always says yes (Y) can always be used to
give a classifier (CY) between a real classifier and the 1,1 corner.
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Fig. 10.2. A composite classifier can always be formed which will have an ROC
lying between the convex hull of all available classifiers and the diagonal line be-
tween 0,0 and 1,1. (Genetic programming and other techniques can sometimes fuse
classifiers to yield improved classifiers which lie above the convex hull.)
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to a quadrilateral (ZAYX). ZAYX is composed of triangles ZAX and XAY. ZAX’s
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proportion of positive cases. Then the average cost of classification at point
x, y in the ROC space is (1− p)αx+ pβ(1− y).

Lines of equal cost are parallel and straight. Their gradient is α/β × (1− p)/p.
If the cost of error on the two classes are equal (α = β) and 50% are posi-
tive (p = 0.5), the gradient is 1 and the lines are at 45 degrees, i.e. parallel
to the diagonal. Note that our GP fitness function ( 1

2True Positive rate +
1
2True Negative rate) also rewards equally points that are equally distant
from the diagonal. In other words it treats errors on both classes as if they
were being equally important. It is a simple alternative to error rate, and it
deals with the common case that more training data is available for one class
than the other.
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Fig. 10.4. With only one measured point on the ROC, the convex hull reduces to
a quadrilateral (ZAYX) whose area is 0.5TP + 0.5(1 − FP). Since A1 and A2 are
the same distance from the diagonal ZY, the triangles ZA1Y and ZA2Y have the
same area. Thus the quadrilaterals ZA1YX and ZA2YX have the same area.

10.6 The Bioavailability Data

In high throughput screening (HTS) [10.11, 10.12, 10.13] and IC50 [10.14]
experiments the chemical properties of many thousands of chemicals were
measured in solution. In contrast, oral bioavailability is measured in living
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organisms. This severely limits the number of measurements. In fact only
481 data points on human subjects were initialy available. These are data for
marketed drugs.

The available data were randomly partitioned into 321 to be used for
training and 160 held back as a holdout set. I.e. to assess how well the evolved
models perform on data which they were not trained on.

The chemicals selected for measurement are naturally a highly biased
sample. The sample consists only of chemicals which made it through the
drug discovery process. There are two things we would like to know about
any predictive classifier; how well it will work on chemicals like those on
which it was trained and secondly (and much more difficult), how well will it
extrapolate outside the training domain.

In addition to the training data we also had access to two further datasets.
A further 124 human records, and data from rats. There was almost no over-
lap between the drugs in the human datasets and the chemicals in the rat
dataset. However the rat dataset was naturally more extensive. Before using
the rat data, chemicals known to have a specific bioavailability difference (re-
lated to “clearance”) in humans to that in rats where excluded, leaving 2013
chemicals. Figure 10.5 shows, as expected, there are systematic differences
between the rat and the human data.
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Fig. 10.5. Human and rat bioavailability data. Note only 19% of human data has
a bioavailability of 33 or below, while 47% of the rat dataset is in class 0.
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10.7 Chemical Features

An implicit modelling goal is that the model should be readily applicable
to novel chemicals. Indeed we may wish to use the evolved model to pre-
dict the chemical properties of chemicals that have yet to be synthesised.
I.e. “virtual chemicals” which exist only in the computer so far. Therefore
the models must be based on chemical formulae, rather than three dimen-
sional shapes (conformations). Since chemistry (particularly biochemistry) is
inherently three dimensional this is a fundamental restriction. Nonetheless,
as we shall see, predictions can still be made.

Chemical formulae can be viewed as graphs with labelled nodes (the
atoms) and labelled edges (the bonds) (see Figure 10.6). However it can
be inconvenient to work with such graphs. Instead it is common practise in
Cheminformatics not to work from the chemical formulae directly but in-
stead to precalculate chemical “features”. The pharmaceutical industry has
considerable experience with designing features. Simple features include, the
presence or absence of charged atoms, aromatic rings, specific groups and
metallic atoms.

O

OH

CC

H

H

H

Fig. 10.6. Chemical structure of Acetic Acid. Acetic Acid’s chemical formula
is CH3CO2H. While its SMILES (Simplified Molecular Input Line Entry Specifi-
cation) representation is CC(=O)O. In the SMILES representation all hydrogen
atoms are omitted, branches are shown with parenthesis and double bonds with
“=”.

A total of 83, numerical and categorical, chemical features from a diverse
array of families (electronic, structural, topological/shape, physico-chemical,
etc.) were computed for each chemical, starting from a SMILES1 representa-
tion of it’s primary chemical structure (2-d chemical formula).

Of the 83 features, all but 7 had previously been used in when modelling
chemical interaction with a P450 cell wall enzyme [10.14].

10.8 Genetic Programming Configuration

The genetic programming system is deliberately simple. For example the GP
uses a single type. So categorical and integer as well as continuous measure-
1 http://www.daylight.com/dayhtml/smiles/
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ments and features are converted to single precision floating point numbers
before the GP is run. The GP is summarised in Table 10.2.

10.8.1 Function Set

The functions used for combining feature values and numerical values are the
four binary arithmetic functions (+−∗/) and a four input “if”. Since functions
are initialy used randomly, division is “protected”. This means division by
zero is trapped and the value 1 is returned rather than attempting to perform
division by zero.

IFLTE evaluates its first two arguments. If the first is less than or equal
to the second, IFLTE returns the value of its third argument. Otherwise it
returns the value of its fourth argument.

10.8.2 Terminal Set

The terminals or leaves of the trees being evolved by the GP are either pre-
calculated compound features (cf. Section 10.7) or constants (see Table 10.2).
GProc does not use “ephemeral random constants”. Instead all the numeric
values used by the evolved expressions are chosen from the fixed initial set.
The random constants are drawn from a very non-uniform distribution of
both positive and negative values, with about 500 values lying between -10
and +10. This is generated using a “tangent” distribution [10.42]. Random
values are uniformly generated in the range 0 . . . π and then scaled by mul-
tiplying by 10. Duplicates are discarded. Finally the integers 0 to 9 are also
included to assist with categorical data. Figure 10.7 shows the distribution
of constants.

10.8.3 GP Genetic Operations and other Parameters

Following [10.44] and others, we use a high mutation rate and a mixture of
different mutation operators. To avoid bloat, we also use size fair crossover
[10.43] and limit the maximum model size to 63, see Table 10.2.

10.8.4 GP Fitness Function

Each individual returns a real number. This is treated as if it was a prediction
of the true percentage bioavailability. However first it is truncated to force
it to lie in the range 0 . . . 100. There are two components of fitness 1) error
squared and 2) 1

2TP + 1
2 (1− FP) (cf. Section 10.5.1).

Error squared is simply the sum of the squared difference between the
(truncated) value returned by the individual and the measured bioavailabil-
ity across all the training compounds, divided by the number of training
compounds.
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Table 10.2. GP Parameters

Objective: Evolve a predictive model of human bioavailability
Function set: MUL ADD DIV SUB IFLTE
Terminal set: 83 features, 0 0 1 2 3 4 5 6 7 8 9 plus 1000 unique random

constants

Fitness: 100, 000×
(

1
2
TP + 1

2
(1− FP)

)
−
∑
|a−actual|2/num chemicals

Measured on 321 (59- and 262+) drugs selected for training
Selection: generational (non elitist), tournament size 7
Wrapper: Force into range 0..100 (i.e. if a < 0, a = 0 if a > 100, a = 100)

Iff a > 33 Predict ok.
Pop Size: 500
Max model size: 63
Initial pop: Each individual comprises one tree each created by ramped half-

and-half (2:6) (half terminals are constants)
Parameters: 50% size fair crossover, crossover fragments ≤ 30 [10.43]

50% mutation (point 22.5%, constants 22.5%, shrink 2.5% sub-
tree 2.5%)

Termination: generation 50
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Value of constants available to GP

 Smallest constant -5637.864380  Largest constant 23177.909763 

Constants
Theoretical

Fig. 10.7. Distribution of fixed constants. Theoretical line ( 1
rπ

1
1+(x/r)2

, r = 10)

is derived from derivative of inverse of tangent function used to randomly chose
the constants. Scaling factor r means we expect 50% of constants to lie in −r . . . r,
10% to lie outside −6.314r . . . 6.314r, 1% to lie outside −63.66r . . . 63.66r, 0.1% to
lie outside −636.6r . . . 636.6r etc.
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To calculate the true positive (TP) and false positive (FP) rates, the
(truncated) value returned by the tree is compared with the threshold 33. Val-
ues ≤ 33 are treated as predicting poor bioavailability (negative) while values
above 33 indicate positives. The individual’s overall fitness is given by the
weighted sum of the two components: f = 100, 000 ×

(
1
2TP + 1

2 (1− FP)
)

+∑
|error|2

number cases . (100,000 was chosen as the weighting factor empirically. A Pareto
approach might have been used instead [10.42].)

10.9 Experiments

We conducted two experiments, both of five runs. The first used 321 com-
pounds randomly drawn from the first 481 human data records. The second
set used 1342 records randomly chosen from the 2013 records for rats. Apart
from the training data, the second set of runs were identical to the first,
cf. Table 10.2.

10.9.1 Training on 321 Human records

The fittest models in generation 50 of the five runs were compared. The model
shown in Figure 10.8 was chosen as the best overall. This was primarily be-
cause the difference between its (ROC) performance on the training and 160
human test records was the smallest of the five. A small difference suggests
that the model does not over fit the training data and so may generalise
to other chemicals. While the test data was used for model selection, the
model’s performance was later tested on a further 124 holdout records. No
significant difference was found. We are reasonable confident that the model’s
ROC (“605” in Figure 10.9) is a fair indication of its likely performance on
similar data.

After model selection, it was tested on the 2013 compounds whose
bioavailability in rats was known. Its performance was significantly worse.

10.9.2 Training on 1342 Rat Records

Again the five fittest models evolved at the end of the five runs where com-
pared, and again the one (shown in Figure 10.10) was chosen since it had the
smallest difference between training and test performance. Its performance on
its training data is noticeably worse than that trained on the human data set.
However (see Figure 10.11) its performance does not fall away when tested
on data from another species (i.e. human). That is, our second experiments
automatically produced a simpler model with wider applicability than the
first but at the cost of lower predictive performance.
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Fig. 10.8. Evolved model of bioavailability created using human training data.
The model has been simplified to remove redundant code, without affecting its
performance. Final size 55.
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Fig. 10.9. Receiver Operating Characteristics of evolved model of bioavailability
created using human training data. (Model is shown in Figure 10.8. It has been
simplified by hand). Performance across all human data includes (20%, 68%) while
for the same (68%) true positive rate the classifier only achieves FP=51% across
all rat data. There is no statistical significance [10.41] between the area under
the curves (AUROC) for the four human datasets. However the difference between
AUROCs of the combined human and rat curves is unlikely to be due to chance
fluctuations.
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f15SUB

ADD

Fig. 10.10. Evolved model of bioavailability created using rat training data.
Size 35. Only feature f6 is used by both this model and that shown in Fig-
ure 10.8. One can readily see that the model falls into the product of left and right
components. The left evaluated to either f11+f12+f13-f14-f16 or f15 depending if
f9≤f10(f6+f11). While the right hand side comes to either a small value (7.083313)
or a large (36.854865) value depending only on f16 v. f17. The RHS can be simpli-
fied to if f16> 6.981575−f17 then 7.083313 otherwise 36.854865, with only marginal
effect.
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Fig. 10.11. Receiver Operating Characteristics of evolved model of bioavailabil-
ity created using rat training data (cf. Figure 10.10). This model achieves a false
positive rate of 32% for a true positive rate of 70%. Only a single point on the
ROC (shown with +) is used to assess the performance of the classifiers as they are
evolved. (The performance of this classifier on the rat validation data is shown with
×.) Hanley’s statistical significance test [10.41] shows the difference in the AUROC
of the rat and human curves can be explained as chance fluctuations. The two M2
points refer to the simplified model shown in Figure 10.15.
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10.9.3 Simplification of Evolved Model of Rat Bioavailability

As Figure 10.10 makes clear the GP model evolved using the rat data is un-
necessarily complex. The first of three stages of simplification was to replace
the large nested if statement on the right hand side (RHS) by a single if (ac-
tually by (IFLTE f16 (SUB 6.981575 f17) 36.854865 7.083313), cf. Fig-
ure 10.12). In the second stage, the new model was used to seed a new GP run.
In order to encourage the evolution of still simpler models, their maximum
size was reduced and the fraction of shrink mutation was greatly increased.
Details are given in Table 10.3.

SUB

f176.981575

IFLTE

f9 MUL

ADDf10

f6 f11 SUB

f12 0

SUB

f13 f14

MUL

f6 f11

ADD

f15SUB

ADD

IFLTE

f16 36.854865 7.083313

Fig. 10.12. Seed loaded into GP population for automatic simplification. Size 27.
(Produced by shrinking RHS of model evolved using rat data, cf. Figure 10.10).

Table 10.3. GP Parameters used to simplify model, cf. Table 10.2. (All parameters
were as the first set of GP runs on rat training data except where given.)

Objective: Simplify best model evolved using rat bioavailability data
Selection: Elitist. (Generational and tournament size 7, as before)
Max model size: 41
Initial pop: 100% seeded with model shown in Figure 10.12. Each new sub-

tree inserted by subtree mutation is created with ramped half-
and-half as before but with max depth range (1:2), rather than
(2:6).

Parameters: 10% size fair crossover, 90% mutation (point 4.5%, con-
stants 4.5%, shrink 76.5%, subtree 4.5%)

After 50 generations, this run produced a simplified model of similar per-
formance. The RHS was unchanged but the LHS was simplified. In the new
model the the first argument of the if (f9) was replaced by f15, two of the
features in the second argument were replaced and the large subtree which
had been the third argument of the if was replaced by zero, see Figure 10.13.
In the third stage the model was further simplified by hand.
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f176.981575

IFLTE

MUL
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f18

MUL

f15

IFLTE

f16 36.854865 7.0833130f15

f6

Fig. 10.13. Automatic simplification of seed model (cf. Figure 10.12) produced
at generation 50 by GP. Size 17.

The model was rewritten to reverse the order of the multiplication and
the ifs (making no semantic difference). The subexpression f16×(f6+f18) was
replaced by zero and the two remaining constants were rounded to the nearest
integer. Yielding if(f1(f15, f16, f17) > 33 then bioavailability is ok. Where
f1 = if f15 ≤ 0 then 0 else if f16 < (7 − f17) then f15 × 37 else f15 × 7, cf.
Figure 10.14. Which in turn can be simplified to if f15> 0 and f16 < (7− f17)
then predict bioavailability is ok. This final model (M2, Figure 10.15) has
a true positive rate of 85% (human) 88% (rat) with a corresponding false
positive rate of 47% (human) 55% (rat). These points are plotted as M2 on
Figure 10.11.

IFLTE

f16

37f15 f15

SUB

f177 7

MUL MUL

00f15

IFLTE

Fig. 10.14. Simplification of compacted model slimed by GP (cf. Figure 10.13).

Note, apart from re-arranging the if and multiplication operators, each
simplification made by hand resulted in a slight reduction in classification
performance. In principle, if one could establish a quantifiable trade off be-
tween model complexity and accuracy (perhaps based on information theory)
these steps could have been automated.
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Fig. 10.15. Predicting bioavailability (M2 production version).

10.10 Discussion

The results of the previous section indicate that we can automatically evolve
predictive models of bioavailability for chemicals like those for which we al-
ready have measurements.

A, possibly simplistic, explanation for the difference between the results
when training with human data and rat data is simply the size and nature
of the training data. When the volume of data is small its easy to get higher
performance in the limited domain. However, in these cases, machine learn-
ing models are liable not to extrapolate out of their training domain. Thus
the first model works on human data but fails on the rat data. In contrast,
Figure 10.5 (page 221) suggests that the rat data is more diverse (and thus
harder to learn) but also covers the space occupied by marketed drugs as
a subset. Since modelling the rat data is harder, performance is somewhat
reduced but, importantly, it does not fall off on the human data set. We tried
to confirm these assumptions using a cluster analysis but this was some-
what inconclusive. Obtaining identical performance on different species with
different chemicals is very encouraging.

It is critical that models are able to predict properties of chemicals, when
we do not know them. Our experiments tend to reinforce the view that this is
possible only where chemicals are like those we have already met. Accuracy
will fall away with dissimilar chemicals. Nonetheless in drug discovery we are
dealing with a very limited part of the whole of chemical space and so we
may hope for useful extrapolation.

The simplicity of the evolved model (Figure 10.15) suggests that our initial
assumption that many mechanisms are involved in ensuring molecules reach
the blood stream was too cautious. The simplicity hints that perhaps either
there are few dominating mechanisms or that many mechanisms are similar.
A second, less encouraging, possibility is that few mechanisms are involved
with the observed chemicals because the chemicals we have measurements
for, are too similar to each other. That is, a more complex model would be
needed to cover the whole chemical space of potential drugs. Also the model
suggests that the GSK features are indeed suitable for modelling important
drug properties.
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Other pharmaceutical uses of data mining might be to highlight which
events in patient histories are important and to sift through records to differ-
entiate drug interactions from the normal background prevalence of unrelated
or unchanged diseases. Following the success of the Human Genome project,
it is anticipated that DNA data (e.g. gene expression levels) will soon lead to
the rapid identification of patients with genetic predispositions to both dis-
ease and adverse reactions to drug treatments. However, at least at present,
DNA chip data presents a difficult data mining problem.

10.11 Conclusion

We have used genetic programming (GP) to automatically create inter-
pretable predictive models of a small number of very complex biological in-
teractions of great interest to medicinal and computational chemists who
search for new drug treatments. Particularly, we have found a simple predic-
tive model of human oral bioavailability (Figure 10.15). While the models are
not (and probably can never be) 100% accurate, they use readily available
data and so can be used to guide the choice of which molecules to forward
to the next (more expensive) stage in the drug selection process. Notably
the models can make in silico predictions about “virtual” chemicals, e.g. to
decide if they are to be synthesised.

Since the models are simple and presented as mathematical functions,
they can be readily ported into other tools, e.g. spreadsheets, database queries
and intranet pages. Little more than “cut and paste” may be required. Run
time of the GP part of the model (once produced) is unlikely to be an issue.
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