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Abstract

This paper reports on a novel method of signal modelling that employs a variable model structure as opposed
to the fixed model structure used in conventional modelling methods. The functional form of the model along
with any required numerical parameters are simultaneously estimated from the signal sequence to be modelled.
This is accomplished by defining the model functional and its parameters in terms of structured lists of
symbols, and using an estimation algorithm that can infer symbol lists from the given data. Motivated by
recent work in cellular coding and evolutionary computation, we use genetic programming (GP) to evolve
high quality model structures. This is based on a coding the model in terms of an expression tree in polish
form which can then be manipulated and optimised using standard genetic algorithm (GA) techniques. In
conjunction with the model structure evolution, we use simulated annealing to optimise the numerical
parameters of the model and a set of  production rules to minimise the model order.  The paper discusses how
these three processes can be combined to yield a powerful general purpose modelling system.

1. Introduction and Overview

The aim of this paper is to report on a new technique of adaptive signal modelling. Our approach involves a novel
combination of genetic evolution and simulated annealing to yield an algorithm that simultaneously estimates a
model structure as well as the numerical parameters of the chosen model.  This leads to a general purpose
modelling algorithm with a wide range of applications including system identification, signal coding, signal
detection, classification, spectral analysis, and signal synthesis. The method presented in this paper attacks a
problem domain that is somewhat more general than domain covered by the current generation of modelling
techniques. These are normally only concerned with finding of a set of numerical parameters for a fixed model
structure that has been chosen a-priori.

In this work, the model structure will be estimated from the given data. The aims of this are several. Firstly,
we hope to be able to obtain lower error measures than classical procedures for a given model size. A second aim
is to widen the class of signals that can be used with an estimator, and finally, we seek model structures that have
small numbers of parameters.

The approach we take is to use a combination of genetic algorithms (GA) and simulated annealing to evolve
and optimise both the model structure and the model’s numerical parameters. Motivated by recent work in genetic
programming [Koza 90], we represent the signal model as a genotype, which is a list of symbols that maps onto
an expression tree defining the functional structure of the model.  A population of these genotypes is allowed to
evolve under the control of a GA using the mean square error between the signal estimates and the observations
as the basis of a fitness measure. Running in parallel with the GA is a fast simulated annealing algorithm that
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implements learning of the numerical parameter values of each model in the population. In addition, we also
employ other processes in the modelling procedure, namely a set of reduction rules which remove redundancy
in the genotypes so as to minimise the model order.

2. Signal Modelling

2.1. The Classical Approach

Finding values for the parameters of a model for an observed signal is one of the most common and fundamental
operations carried out in signal processing. It is a procedure that is at the heart of a wide variety of signal processing
systems and algorithms. The main point of signal modelling is, loosely speaking, to simplify the signal in some
way so that in can be represented using a smaller number of parameters than the original sequence of samples.
These model parameters can then be used as an alias for the signal, with a view to reducing the complexity of
many important operations such as detection, classification, storage, etc.

One way of looking at signal modelling is to consider it as a process whereby an estimate of the signal is
synthesised from the model structure and its parameters.  Let X =  {xn,  n = 1 … N} be an observed sequence that
is to be modelled,  M =  {mi,  i = 1 … P} represent a set of model parameters, and X̂ = {x̂n} be the estimated
signal samples. Using F  to denote the function that computes the estimated signal from its model, we can express
the estimate as,

x̂n = F(M, n)

The problem addressed by classical signal modelling is to find the parameters M from a set of data X using
a fixed model structure defined by F.    

A fundamental point is the quality with which a signal can be described by a model. This can be quantified
in various ways, one of the more important being the weighted mean squared error between the observed signal
and its estimate,

e(X̂, X) = 
1
N

 ∑ 
n=1

N

wn (xn − x̂n)2

where {wn} are a set of weighting coefficients. The main tasks required of a modelling procedure are therefore
twofold: (1) to effect good data reduction, P < N, and (2) to yield as low an error measure e as possible for any
signal in the class of signals to be applied to the modelling algorithm. Additional properties to be considered
include the computational cost of finding the parameters M from X, and perhaps the number of different types
of signal that can be successfully modelled (the generality of the procedure).

The majority of signal modelling algorithms in use today are really just estimators for the numerical values
for a structure that has been chosen a-priori. For instance, many types of stationary signals can be represented as
the output of a linear filter driven by white noise, leading to the well known autoregressive (AR), moving  average
(MA),  and combined (ARMA) signal models, along with their derivatives and variants. In these methods, the
function of the modelling algorithm is to find numerical values for the filter coefficients. Although these methods
can work very well, their performance is always dependent on the matching of the model structure to the given
signal. In a sense, you must know what you are looking for, or at least have a good idea of what it looks like. If
the chosen model is not matched to the observed signal, parameter estimates will be meaningless, and other
problems, like unstable estimation algorithms, can arise.

The procedures developed below are not restricted to simple linear models but are capable of generating
highly non-linear structures.
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2.2. The Evolutionary Approach to Signal Modelling

2.2.1 Parameterising the  Model Structure
The focus of the method presented herein is to treat the task of finding a signal model structure as part of the
estimation problem. This is illustrated by way of a simple example. Consider a deterministic signal - a damped
exponentially decaying sinusoid,

x̂n = 10 e−0.1 n sin(0.4 n)

Here the model parameters and structure could be defined as,

M = {A, α, β} and F(M, n) = A eαn sin(β n)

The key to using a variable model structure as opposed to a fixed one is to represent it in a parameterised
form with a coding that is able to define a wide range of different structures and at the same time have parameters
whose values can be reliably and efficiently estimated. Introduce a second set of parameters,
G = {gi, i = 1 … Q}, and a functional mapping, FG,  defining the model structure function F from G.  We seek
a coding for G which can represent a variety of different model functions FG, using as few parameters Q as
possible, along with efficient algorithms that can estimate G from X and evaluate FG from G.    

2.2.2 Expression Trees
The model structure FG is parameterised in terms of G by describing it in terms of a symbolic expression tree,
which in turn is represented as an ordered list of symbols and numerical values in G. An expression tree is a point
rooted graph whose nodes are the primitive component functions of the model. The ordering of the graph dictates
the sequence in which these primitives are executed and how their output values are combined to provide the
estimated signal sequence. The root of the tree yields the estimated sequence {x̂n}, while the leaves are the external
arguments to the modelling function F (see figure 1). 

Expression trees of this form can be written using a syntax not unlike that used in LISP programmes. To be
precise, the expression tree represents F using a polish notation. The damped sinusoid model given above could
be described by the expression tree shown in figure 1, which is written in polish notational form as,

x̂n = (∗ A (∗ (sin (∗ β n)) (exp (∗ n α))))

An expression tree is completely defined by the triplet {T, N, G}, where T = {ti, i = 1 … NT} is a set of
terminal nodes, N  = {Ni, i = 1 … NN} is a set of non-terminal nodes, and G is a coded description of the
connections between the nodes within the tree. The terminals in T  are symbols representing the leaves of the
tree. These are the arguments (inputs) that are supplied to the model structure function F. The non-terminals are
symbols which label the internal nodes where computations are performed.  The example from above uses a
terminal set of T = {A, α, β, n} and non-terminal set consisting of the multiplication operation along with the sin
and exponential functions, i.e., N = {*, sin. exp}. The third component in the tree definition is the parameter list,

A

*

*

sin

*

β

exp

*

α

Model output: x̂n = A eα n sin(β n)

Parameterisation G = {*, A, *, sin, *, β, n, exp, *, n, α}
Terminal set T = {A, α, β, n}
Non-Terminal set N = {*, sin, cos}

n n
Terminal Nodes

Non-Terminal Nodes

Tree function: F(A, α, β, n)

Figure 1 - A Symbolic Expression Tree for a Damped Sinusoid
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G = {gi, i = 1 … Q}. This is an ordered list of Q symbols with gi ∈ Ν ∪ T. The ordering of G is such that its first
element labels the root node. Following this are listed the symbols for the nodes supplying the inputs to this node
starting from the leftmost branch and applying this rule recursively down each branch. Each node in the tree can
now be identified with a unique integer index that is its position within G.  

An expression tree of this form can realise a large number of model structures using a relatively small set of
non-terminals. In fact, the basic arithmetic functions and a single (non-zero) constant numerical value, N = {+,
-, *, /, 1, n},  are sufficient to define any function F if the size of G is unlimited. One of our aims though is to
minimise the number of model parameters. This is carried out by judicious choices of the terminal and
non-terminal node types. For instance, although a sine function could be in theory be approximated to any desired
degree of precision by a power series involving only addition and multiplication operations, it would be far more
efficient to include the sine  function in the set of non-terminal node types. Other primitives that we have found
to be useful are those listed in tables 1 and 2. The functions of some of these cells will be described in more detail
later in the paper.

Note that the terminal and non-terminal node sets must be chosen a-priori ; they are not estimated from the
data to be modelled. The modelling problem is to find an ordered list of symbols (G) from the alphabet defined
by N and T.

2.2.3 Expression Trees with Branch Value Scaling Factors
An extension to the basic tree structure is to let the branches forming the connections between nodes in a tree
have numerical values that scale the output of a processing node before it is supplied to the input of the node at

*

exp

n

sin

n

11

A

β α

G = {X, sin, n, exp, n}
B =  {A, 1, β, 1, α}
T = {n}
N = {X, sin,  exp}

Model output: xn = A eα n sin βn

Tree function: y = F(n)

Figure 2 - Branch Scaled Tree for Damped Exponential

D D

DX

X

a1

a0

xn

xn

1

11

1

+G = {+, D, X, D, D, X}
B =  {1, 1, a0, 1, 1, a1}
T = {X}
N = {+, D}

Model output: x̂n = a0 xn−1 + a1 xn−1

Tree function: y = F(xn)

Figure 3 - Expression Tree for AR(2) Process

Label Action
X Data sample xn

n Time sample index n

1 Constant number (e.g. 1) etc.

R Random number - Gaussian (0,1)

Vi Get value from relative node i

Ai i’th argument of a function definition

Table 1 - Terminal Node Types

Note 1: Some nodes (e.g. Vi,  Ai, Gi) require a numerical alrgu-
ment. This is considered to be part of the symbol in the G list.

Note 2: A saturation limit is applied to the output of each
non-terminal cell to prevent numerical overflow problems. In
addition, cells with restricted range arguments (e.g. log), will
have their inputs restricted as is appropriate.

Note 3: In the table of non-terminals, the cell function column
lists the function that calculates the cell output from the cell
inputs which are labelled i1, i2 etc., starting from the left hand
node.

Label Description Cell Function Branches
+ Addition i1 + i2 2

- Subtraction i1 = i2 2

/ Division i1 ⁄ i2 or 0 if |i2| < ε 2

* Multiplication i1 × i2 2

+1 Increment by 1 i1 + 1 1

-1 Decrement by 1 i1 − 1 1

*2 Multiply by 2 i1 × 2 1

/2 Divide by 2 i1 ⁄ 2 1

exp Exponential ei1 1

sin sine function sin(i1) - i1 in radians 1

cos cosine function cos(i1) - i1 in radians 1

log logarithm ln(i1) 1

sqr square i1 × i1 1

root square root √⎯⎯i1  or 0 if i1 < 0 1

if Selection i2 if i1 ≤ 0 otherwise i3 3

U Until loop exexute i2 until i1 ≤ 0 2

D Unit time delay i1 from previous call to this cell 1

Gi definition tree i Fi(i1 … iQi) variable

Table 2 - Non-terminal Cell Types
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the end of the branch. Let B = {bi, i = 1 … Q} be the set of branch values for a tree, where bi is the scale factor
for the output of the cell gi . The model structure and its parameters are now described by the set {T, N, G, H}.
Including the parameters in B might at first sight appear to increase the number of model parameters. In fact the
reverse is true, and the number of parameters will usually be smaller because the branch value scaling factors
reduces the number of multiplication nodes required (see figure 2). 

2.2.4 Stochastic Signals
Classical stochastic signal models can be described using a unit time delay operation (D) (non-terminal) with the
observed data {xn} in T.  The D cell uses an internal storage register. When the output of a D cell is requested it
returns the value of this register and stores its input value in the register ready for the next call.

For example, the linear prediction model of a second order AR process is,

x̂n = a0 xn−1 + a1 xn−2 

which has an expression tree and branch values described by the lists, (see figure 3). 

G  = {+, D, X, D, D, X},       B = {1, 1, a0, 1, 1, a1}

where X is the symbol for a terminal node supplying the samples of the AR process, {xn}.  As an aside, it  is
pointed out that the expression tree parameterisation is far from unique; this process could equally well be
modelled using,

G = {+, D, D, X, D, X},       B = {1, 2, 0.5, a1, 1, a0 }

2.2.5 Recursion
Recursion is a powerful tool that can simplify the description certain types of computational tasks. It can be
implemented in an expression tree by using the special terminal node labelled Vi. The action of this is cell is to
return the current output value of the node located in the G list at a distance of i units from the current node. The
jump cell Vi  is labelled with an integer number specifying the jump distance.  To prevent infinite recursions, it
is implicitly assumed that a unit delay cell is placed in the path between the output of the node pointed at by the
i parameter of the V cell and the value returned by the cell. If i points to a cell outside the limits of the G list, it
will be clipped at the start (or end) of G.

The non-terminal labelled U implements a useful loop control function. A U node has two input branches. Its
action is to execute its right branch a number of times specified by the left branch. The V  and U cells can be
combined to yield powerful constructions. For instance, a function returning the sum of squares of an input
sequence evaluated over a window length of N samples is, (see figure 4),

G = {U, N, +,  sqr, X,  V−2}  and B = {1, 1, 1, 1, 1, 1} 

U

N +
D

V−2sqr

G = {U, N,. +, sqr, X, V−2}
B = {1, 1, 1, 1, 1, 1}
T = {N,  X}
N = {U, +, sqr, V}

Output y = ∑ 
i=1

N

xn xn

(implied by
V the cell)

Window size

Tree Function: y = F(xn, xn−1, N)

X

Input sequence xn

Figure 4 - Expression Tree for Sum of Squares Calculation
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2.2.6 Hierarchical Model Structures
Hierarchical tree structures involve more than one expression tree. The additional trees are used to define
non-terminal functions for use in the main model evaluation tree, effectively allowing it to be composed of cells
whose functions are not defined in advance, but are themselves defined by the additional expression trees.. The
model is now coded by a list of NG tree descriptions, {G1, … GNG} along with corresponding lists of branch
values, terminal, and non-terminal sets, which may be different for each tree. The non-terminal cell labelled Gi

indicates a cell whose function is defined by the tree Gi, and the inputs to a Gi cell are special terminal cells in
Ti labelled as Ak. These terminals implement the dummy arguments to the function FGi defined by Gi, where

there the qualifier k  in the Ak cell is a small integer number indicating an argument number in a list of arguments
to FGk.

To avoid infinite computational loops, a strict hierarchy is imposed,

Gk ∉ Nk+1, … NNG    k = 1 … NG−1

2.2.7 Reduction of the  Model Order
One of our aims is to minimise the number of model parameters. This is accomplished using a set of reduction
rules that transforms a tree into a simpler form with a minimum number of nodes. The reduction algorithm
recursively descends a tree and employs the fundamental laws of algebra and arithmetic to eliminate redundant
nodes and branches. Space does not allow us to more fully describe this procedure, but to illustrate its flavour,
the reduction algorithm would replace the tree, G = {+, X, X} B =  {2, 3, 4} with the simpler tree, G = {X} B =
{14}. (i.e.  2 (3 x + 4 x) = 14 x).  

3. Genetic Evolution of Expression Trees

3.1. Genetic Algorithms

To return to the main modelling problem, our objective is: given sets of terminal and non-terminal primitives T
and N, and a sequence to be modelled X,  find an expression tree G and branch values B that best model the data.
This is an non-trivial optimisation problem, essentially requiring a search over the space of all functions that can
be defined by expression trees and over all possible sets of branch values for each tree. This is a ridiculously huge
search space, but is one whose structure is ideal for a GA implementation. The GA operates by manipulating the
G lists only; it is not used to estimate the branch values B, which are optimised by a simulated annealing algorithm
running in parallel with the GA. Thus we have separated estimation of the model  structure from its numerical
parameters. This is because we believe the GA to be better at optimising symbol lists and not so good at numerical
lists, whereas simulated annealing appears to be more suited to numerical problems than symbol ones. Further
comments on this are presented in section 4.1 where we describe the simulated annealing algorithm.

In this section we outline a GA that evolves a population of models with a view to finding a best fit to the
given data. The GA is based on ideas originally developed by Koza [Koza 92] who pioneered the use of genetic
programming as a means of evolving function definitions and computer programmes. 

The key components of a GA are, [Goldberg 89]:

Phenotype

The phenotype is the object that “lives” and interacts with the environment defined by the GA. Here,
the phenotype is a particular signal model structure and numerical parameters, and the environment
is the data sequence to be modelled. i.e. the phenotype is the modelling function FG(X), in an
environment X.

Genotype 

This is an encoding which describes the phenotype. In our case the genotype is the expression tree and
its branch values, (G, B), or in the case of a hierarchical modelling algorithm, lists of tree definitions,
{Gi}, {Bi}, i = 1   NG.
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Fitness Function

A performance measure of the phenotype induced by a genotype. This is a function of the genotype
as well as environmental factors (i.e. the data to be modelled, X). We will denote the fitness function
as fG(X)., (the dependence of f on B is not shown, but is implied). The aim of the GA is to evolve a
phenotype that maximises the fitness function. Using an appropriate definition of fitness, this translates
into finding the best model structure and parameters for the given data.

Selection Criteria

These are the criteria used to select individuals1 for reproduction and creation of new individuals. It
is common to select pairs of parents on the basis of fitness so that the probability of an individual being
chosen for reproduction is proportional to its fitness value.

Breeding Operators

The breeding operators take individuals chosen by the selection criteria and use these as “parents” to
create new offspring individuals. Breeding operators are discussed in more detail later.

Population stabilisation

The offspring created by the breeding operators are added to the population, increasing its size. To
keep the population size stable, some members must be deleted. This is carried out on the basis of
fitness by choosing members at random from a distribution that favours those with the lowest fitness
values.

3.2. Fitness Function

The purpose of the fitness function is to measure the quality of the signal model defined by a given genotype. A
suitable definition for our modelling problem is,

fG(X) = 
1

1 + eG(X)

where eG(X) is the mean  squared error between the signal and its estimate obtained from the model defined
by genotype G,

eG(X) = 
1
N

 ∑ 
n=1

N

⎪⎪xn − FG(n)⎪⎪
2

 This definition yields a fitness value between 0 and 1, with higher values corresponding to better modelling
performance. The fitness function can also be used to implement other constraints.  Minimisation of the model
order may be included as an objective by attaching a monotonically increasing function of the model
size, m(NG), 

f = 
1

1 + e + m(NG)

3.3. Genetic Operators

The two main evolutionary operators used in GA’s are crossover and mutation. These operate on individuals
chosen from the population using the selection criteria (i.e. biased towards models with higher than average
fitness value). The objectives of the genetic operators are to create new individuals that may possibly have higher
fitness values, and also to increase the diversity of genetic material in the population, which is essential to maintain
evolution towards good solutions.
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3.3.1 Crossover
The crossover operator employs a pair of selected individuals as parents to create child expression trees that
inherent characteristics from each parent. The key to successful crossover is to produce syntactically and
semantically correct child expression trees using components from both parents. The method adopted here is to
select a random node in each parent tree and then to swap the sub-trees between the parents at these chosen nodes.
This creates a pair of child expression trees guaranteed be fully terminated and computable (see figure 5). Either
one or both of the child trees can be added to the population to continue evolution. From the point of view of a
genotype, crossover can occur at any locus, but the length of the sub-tree at the locus must be determined to
ensure that complete sub-trees are exchanged during crossover, producing meaningful children. In the case of a
hierarchical system using more than one tree, the crossover operator is constrained to operate only between
parents at the same level in the hierarchy.

3.3.2 Mutation
Mutation is used to create new genetic material, and thus main genetic diversity.  Mutation is sometimes applied
after a new individual is created by crossover. It operates by selecting a node in the child tree at random, deleting
the sub-tree at the selected node, and then replacing it with a newly generated random sub-tree, which may or
may not have the same depth (i.e. the maximum number of nodes from the sub-tree root to a terminal).  The
maximum depth of a mutated sub-tree is limited by a constant chosen by the user of the GA, as is the probability
with which mutation is applied to newly created trees.

A summary of the complete GA for evolution of model structure is shown in table 3.

4. Simulated Annealing of the Branch Values

4.1. Learn from your Parents

The GA presented above is concerned only with evolving tree structures; the branch value parameters are not
affected. These are optimised during the lifetime of  an individual by a simulated annealing method [Kirkpatrick
83]. In a sense, we are likening the branch values to knowledge which is accumulated during the lifetime of an
individual by its interaction with the environment. The annealed branch values are inherited by the child trees
created in the GA, thus providing a passage of knowledge from parents to children. Note how we have separated
the evolution of the genetic material used by crossover and mutation from the branch values learned through
simulated annealing. This is a deliberate move to try and ape natural evolution where current thinking concludes
that experience gained during the lifetime of an individual is not passed on to children through the parent’s genes.

 G1   = {+, *, X, 2, X}

/

3 +1

X

G2 = {/, 3, +1, X}

-

G3 = {+, +1, X, X} G4 = {/,  3, *, X, 2}

X

+1

+

3

/

*

X 2

+

* X

2X

X

Parent A Parent B Child 1 Child 2

 G1   = {G1
1 G1

2 G1
3}

 G2   = {G2
1 G2

2 G2
3}  G4   = {G2

1 G1
2 G2

3}

 G3   = {G1
1 G2

2 G1
3}

FG2 = 
3

x + 1 FG3 = x + 1 + x FG4 = 
3

2 xFG1 = x + 2 x

Figure 5 - Crossover of Expression Trees
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However, learning and experience are, in higher animals,  inherited through the cultural processes of observation
and education.  Recent work in the area of neural network systems [Muhlenbein 89, Grau 93] has employed
similar ideas to good effect.

4.2. The Simulated Annealing Parameter Optimiser

During evolution of the population, a “background” annealing process  operates in tandem with the evolutionary
operators of selection, crossover and mutation. The annealing algorithm provides optimisation of the branch
values through an adaptive trial and error procedure. This learning ability is decreased over time as the individual
ages, and it is controlled by a temperature variable, unique to each individual and dependent on its age 1. The
temperature is initialised to a predefined maximum value when an individual is created, and is slowly reduced
using an annealing schedule. Denoting the temperature for the i’th individual at age k as ti(k), the annealing
schedule we use is, 

ti(k + 1) = γ ti(k), γ < 1.  

When the annealing process is activated, its action is to select an individual from the GA population at random,
and then to select a particular branch in the expression tree of the individual, also at random. The branch value
at the chosen locus is randomly perturbed, by an amount dependent on the temperature. Denotingbi,j(k)  as the
branch value at locus j in the i’th individual at age k, the perturbed branch value is,

b
_

i,j(k) = bi,j(k) + δ(ti(k))

where δ(t) is an infinite variance Cauchy distributed random variable, obtained from a zero mean, unit variance
Gaussian distributed variable, θ, by the transformation,

δ(t) = K tan−1 θ

(K is a scale factor).The use of the Cauchy distribution is based on the work of Szu [Szu 86]. The long tails
of this probability distribution will occasionally yield large perturbations, while the main lobe ensures that most
perturbations are in the neighbourhood of the current branch value. This results in mainly local foraging around
the neighbourhood of the current value, with only occasional excursions to points distant from home. The fitness
of the phenotype using this perturbed branch value is computed. If an increase in fitness is obtained, then the
perturbation  is accepted and the branch will continue to use the perturbed version.  Otherwise, the perturbed
parameter will only persist with a probability given by the Boltzman distribution at the current temperature,

Prob [bi,j(k + 1) = b
_

i,j(k)] =  exp
⎛
⎜
⎝
f
_
 − f

T(k)
⎞
⎟
⎠
 

where f and f
_
 are the fitnesses of the original phenotype and its perturbed version respectively. 

5. The Evolutionary Signal Modelling Algorithm

The complete evolutionary signal modelling algorithm is a combination of the three main processes: (1) evolution
of a population of tree structures using the GA, (2) annealing of the branch values, and (3) minimisation of the
model (tree) size using a reduction rule process briefly discussed in section 2. An outline of the particular
scheduling and sequencing of these three algorithmic components is described in table 4.

6. Experimental Results

A selection of interesting experimental reults will be presented at the workshop.
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Initialisation
Generate a population of random expres-
sion trees and branch value sets.
Evaluate the normalised fitness of each
member in the population.

Repeat  {
Increment the “age” counter. 

Selection
Select a subset of size NGA, of the
population, using fitness proportional
selection. Arrange the selection into
parent pairs.

Reproduction
With probability Pr, replicate each
selected individual.

Crossover
With probability PC, crossover the
parent pairs and create 1 or 2 children
from each pair.

Mutation
With probability PM, apply mutation to
each node in every child.

Life
Evaluate the fitnesses of the children.

Death
Stabilise population size by selecting
low fitness members to delete.

}

Table 3 - The Genetic Algorithm

Initialisation

Define Resources
Terminal and non-terminal sets.
Population size.
Random tree generator data.
GA control  parameters.
SA control parameters.
Scheduling probabilities.

Repeat  {
Keep track of the tree with the best
fitness.

Evolution 
Evolve a new generation using the GA.

Simulated Annealer
With probability PSA, select an in-
dividual at random and execute NSA
simulated annealing trials. 

Tree Optimiser
With  probability POPT, select a node
at random and apply reduction rules
to simplify the sub-tree at this
node.

}

Table 4 -The Complete Modelling Algorithm
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