
Parallel Genetic Programming
Induction of Binary Decision

Diagrams
by Christian Miccio and Eduardo Sanchez, Laboratoire de Systèmes Logiques -

EPFL & Marco Tomassini, Centro Svizzero di Calcolo Scientifico, CH-Manno and
Laboratoire de Systèmes Logiques - EPFL

Genetic programming is a new technique for machine learning, program
induction and optimization loosely based on an evolutionary paradigm.
Genetic programming is easily amenable to parallel computing which help
relieve the intrinsic slowness of the approach. We describe a parallel
implementation of genetic programming on the T3D computer. We apply the
system to a problem of induction of binary decision diagrams used in logical
circuit design. It is shown that the results depend in a critical way on the
representation of the decision diagrams and that the parallel
implementation is able to find the correct solution with less computational
effort than the sequential version.

Summary

Parallel Evolutionary Computing
Genetic Programming for Binary Decision Diagrams Optimization

Binary Decision Diagrams
The Genetic Programming Representation
The Parallel Implementation

Results and Conclusions
References

Parallel Evolutionary Computing

Evolutionary Algorithms (EAs) are a class of artificial adaptive processes that find
their origin and inspiration in the biological natural selection mechanisms. Genetic
algorithms (GAs) [11] seek optimal or near-optimal solutions to hard search and
learning problems by giving more chances of survival to fitter individuals in an
evolving population in which each individual represents a feasible solution to the
given problem through a suitably coded string of symbols. New solutions are
explored by mixing good individuals and artificial mutations are used to prevent
premature convergence to local optima by randomly sampling new points in the
search space. Evolutionary algorithms have found increasing application to many

1 of 8 31/10/16 19:48

problems in diverse areas such as hard function and combinatorial optimization,
neural nets evolution, routing, planning and scheduling, management and
economics, machine learning and robotics and pattern recognition.

Genetic programming (GP) is a variation of genetic algorithms in which the evolving
individuals are themselves computer programs instead of fixed length strings from a
limited alphabet of symbols [6]. Programs are represented as trees with ordered
branches in which the internal nodes are functions and the leaves are the so-called
terminals of the problem. The search space in genetic programming is the space of
all computer programs composed of functions and terminals appropriate to the
problem domain.

Suitable functions and terminals are determined for the problem at hand and an
initial random population of trees is constructed. The population then evolves with
fitness being associated to the actual execution of the program and with genetic
operators adapted to the tree representation. The crossover operation first selects a
random crossover point in each parent tree and then exchanges the sub-trees,
giving rise to two offspring trees. Examples related to our application will be given
in the next section. There are also provisions for preventing trees from becoming
too deep, for simplifying trees and for compressing trees that perform a useful
functions into a single reusable module.

Genetic programming is well-suited to parallel implementation. The most popular
parallel models are the fine-grained or grid models, and the coarse-grain or island
models. In the grid models, large populations of individuals are spatially distributed
on a low-dimensional grid and individuals interact locally within a small
neighborhood. In the island model the population is subdivided into smaller
subpopulations which evolve independently and simultaneously according to a
standard EA. Periodic migrations of some selected individuals between islands allow
to inject new diversity into converging subpopulations. Micro-processor-based
distributed memory machines and workstation clusters are well adapted for the
implementation of this model. The advantage of parallel EAs for difficult problems is
that they can handle larger populations in reasonable times and favor cooperativity
in the search for good solutions ([5], [15]). In the following section we introduce the
binary decision diagrams optimization problem and explain in more detail the
parallel GP implementation used to solve it.

go to the summary

Genetic Programming for Binary Decision
Diagrams Optimization

Binary Decision Diagrams

A binary decision diagram (BDD) is a type of oriented graph used notably for the
description of algorithms. It assemblies, according to some rules, two types of
nodes: the decision or test node and the output node. The decision node is
equivalent to an if-then-else instruction: it realizes a test on a binary variable and,
according to this value, indicates the node following. The output node produces a
value. The two rules of assemblage are: there is one and only one initial node (the
entry point of the algorithm); the output point of a node can be connected to only
one entry point of an other node.

2 of 8 31/10/16 19:48

A binary decision tree is a binary decision diagram that respects a third rule of
assemblage: any entry point of a node is connected to only one preceding node.

Since [8] it has been demonstrated that all logical boolean function can be
represented by a binary decision diagram. This type of representation finds
applications in the test and the implementation of logical functions [3]: the function
of a decision node can be implemented by a multiplexor or demultiplexor circuit and
a binary decision diagram can be implemented by an interconnection of these
circuits. In all these cases, the minimalisation of the number of nodes used is
important, for the cost and/or the time of execution of the function. Nevertheless,
the complexity of this minimalisation is such that in most cases approximate
solutions are accepted [12].

A renewal of interest on the minimalisation of binary decision diagrams is born with
the appearance on the market of programmable circuits named FPGA (Field-
Programmable Gate Array) [13] [10]. These circuits appear under the form of an
array of identical cells (the logic cells), where the user can program the function
inside every logic cell (among some possible) and interconnections between cells.
Each FPGA manufacturer proposes a different type of logical cells and
interconnections. Some, as Actel [1], propose very simple cells, formed of a simple
multiplexor circuit. A minimal binary decision diagram can therefore drive to an
optimal utilization of the FPGA cells.

go to the summary

The Genetic Programming Representation

Figure 1

In preparing to use genetic programming to solve a problem one has to decide on
the set of terminals, the set of primitive functions, the fitness measure, the stopping
criterion and the values of some parameters such as population size and crossover
rate [6]. The fitness of an individual is defined in our case to be the difference
between a perfect solution and the actual number of hits of the given individual on
all the input combinations of values. Therefore, a fitness value of 0 means that the
individual correctly solves the problem.

Figure 2

While the choice is seldom unique, the nature of the problem suggests suitable
terminals and functions. For the representation of binary decision diagrams we tried
two representations. In the first one the terminal set was made by the operation
codes and the output codes. The only function operating on those terminals was the

3 of 8 31/10/16 19:48

three-branches IF function. Random-constructed trees are not guaranteed to be
valid decision diagrams for our problem since the IF function itself can be the first
argument (i.e. the test condition) of another IF function. Furthermore, there is
nothing to prevent an output code from also being the first argument to the IF
function. Finally, input variables can only appear as test conditions. Likewise,
crossing-over valid trees will not necessarily yield admissible offspring (see fig. 1).
We therefore penalized invalid trees by giving to them the worst fitness value in
order for them to be less likely to be selected for reproduction.

In the second solution we avoided mixing terminals by creating a specialized IF
function for each operation code. Example diagrams and a crossover operation are
shown for a simple case in fig. 2. With the latter choice of functions and terminals
all trees are guaranteed to be valid. Results of the runs of parallel genetic
programming using both representations will be discussed in section 3. We now
briefly describe our parallel GP implementation choices.

go to the summary

The Parallel Implementation

The parallel architectures that best matches the rather coarse grain and variable
length of genetic programs are micro-processor-based distributed memory
machines, including workstation clusters. On these machines it is easy to implement
the island model. Good results were obtained in [9] and [7] using a similar
computing architecture.

The T3D multicomputer [4] is a DEC/Alpha-based MIMD machine. The processors
are connected by a fast bidirectional 3-D torus interconnect network.The memory of
the machine is physically distributed although, depending on the programming
model used, it can be globally addressable. Communication latency is low and
bandwidth is high due to latency hiding and data transfer optimized hardware and
easy routing mechanisms. The T3D array is connected through I/O nodes to a Cray
Y-MP host machine on which all program development takes place. Access to
peripherals such as disks, tapes and the network is through the host. Three different
programming models are available on the T3D: message-passing, work and data
sharing using a global address space (CRAFT) and data parallelism.

The message-passing approach perfectly suits the island model for parallel genetic
programming. It is based on PVM which is a standard message-passing
environment.

We started from the publicily available sgpc GP program [14]. The PVM-based code
parallelization was easy except perhaps for the modifications needed to pack and
unpack program trees to be sent to other subpopulations (islands). This requires
linearizing the trees to be packed in a message buffer and rebuilding them at the
destination subpopulation in the new processor's private address space. For
efficiency reasons, we pack all migrating individuals in a single message, which
minimizes message startup and transmission time.

After code parallelization, suitable values for a number of parameters of the
distributed algorithm must be chosen. Besides the usual global population GP values
for each subpopulation one has to define the topology and the number of the
communicating subpopulations, the size N of the subpopulations, the migration
frequency M, the number of migrating individuals K and the individual replacement
policy. We found suitable values by trial and error, running many times the parallel

4 of 8 31/10/16 19:48

algorithm on the well-understood multiplexor problem [6]. The size of the
subpopulations for the present problem was thus set at 400, migration took place
every 7 generations and the number of individuals exchanged was 8 to 10% of the
subpopulation size. These values were close to those used in [9] and in [7].

We experimented with only one processor topology: the ring, and we tested two
synchronous exchange policies: simply passing individuals to the next island in the
ring, alternating directions at each swap, and passing individuals "modulo" the swap
number (fig. 3). The "modulo" swap gave the best results and we retained it for the
subsequent tests. We choose to migrate the best K individuals from each island.

Figure 3

go to the summary

The replacement policy used was that the new K individuals displace the worst K
individuals of the receiving population. Here also other alternatives are possible. A
GP run is terminated either by finding a solution (i.e. a 0 fitness individual) in any
subpopulation or by reaching a maximum number of generations. The following
pseudo-code gives a schematic description of the algorithm:

initialize P subpopulations of size N each
generation number := 1
while termination condition not met do
 for each subpopulation do in parallel
 evaluate and select individuals by fitness
 if generation number mod frequency = 0 then

 send K<N best individuals to a neighbouring subpopulation

 receive K individuals from a neighbouring population

 replace K individuals in the subpopulation

 end if
 produce new individuals by crossover
 end parallel do
 generation number := generation number + 1
end while

go to the summary

Results and Conclusions

We did many parallel GP runs for each of the two choices of functions and terminals
described in the previous section. The parallel GP based on the first terminal and
function set never found a solution in the allowed maximum number of generations
(60). A typical run is shown in Fig. 4, in which the number of individuals having a
given fitness value generation by generation is presented. It is clear that there is

5 of 8 31/10/16 19:48

little improvement after about 40 generations and the search stagnates. The best-of-
all-runs individual attained a fitness value of 2. The sequential program was never
able to find a fitness value better than 4 even when given a maximum number of 100
generations. Clearly, the reason for the unsatisfactory performance both of the
sequential and parallel algorithms was the presence of a large percentage of invalid
diagrams in the populations. This is so in spite of the worst possible fitness value
given to them because crossover, being unrestricted, continuously produces invalid
diagrams.

Figure 4

The second terminal and function set choice proved to be much more adequate. The
parallel GP was able to find the correct solution on most of the 30 runs. A typical
successful run is graphically depicted in fig. 5. Comparing it with fig. 4, it is seen
that the average fitness is much lower and that the run quickly converges to a 0
fitness solution.

Not only did the parallel algorithm perform much better from the point of view of
computing times, which was obviously expected, it also converged more often to the
correct solution than the sequential one using a smaller number of fitness
evaluations i.e., with a reduced computational effort. For instance, a particular run
on a 8-processor system took 33 seconds to complete successfully with a population
of 400 individuals per processor whereas for the same total population size (i.e., 400
x 8 = 3200) a sequential execution on one processor took approximately 10 minutes
to complete. We observed the same effects in parallel GA systems [9] and the
detailed results reported in [7] also agree with this general trend.

It is difficult in the present case to generalize this results. Indeed, we observed that
the speedup fluctuates if processors are added to the system. We think that this
phenomenon is due to the particular problem treated here, which seems to be not
hard enough to require all that parallel processing power. In fact, with more
processors one could use larger populations. But larger populations are not needed
in our case and subdividing a relatively small population on more processors
increases communication overheads and diminishes subpopulation diversity.
Preliminary results on a more difficult problem in evolving financial trading models
with a parallel GP system showed a more consistent behaviour with nearly linear
speedups (work in preparation). Actually, we found that this last problem is only
tractable within reasonable time limits by using parallel GP.

In conclusion, in this work we implemented a parallel GP programming model and
we did preliminary experimentation with binary decision diagrams optimization
problems. Although parallelism was moderately beneficial in this particular case,
more complex problems will benefit even more, allowing larger populations and
more difficult fitness functions to be treated. The work of others [7] and our own
current work in this direction is promising.

go to the summary

6 of 8 31/10/16 19:48

References

[1] Actel. FPGA Data book and design guide. Sunnyvale, Calif., 1995.

[2] S. Arnone, M. Dell'Orto, A. Tettamanzi and M. Tomassini, Highly Parallel
Evolutionary Algorithms for Global Optimization, Symbolic Inference and
Non-Linear Regression, Proceedings of the 6th International Conference on Physics
Computing, European Physical Society, Geneva, 51-54, 1994.

[3] E. Cerny, D. Mange and E. Sanchez, Synthesis of minimal binary decision trees,
IEEE Transactions of Computers, 28, 472-482, 1979.

[4] T3D Software Overview Technical Note, SN-2505 1.1, Cray Research Inc., 1993.

[5] V.S. Gordon and D. Whitley, A Machine-Independent Analysis of Parallel genetic
Algorithms, Complex Systems, 8, 181-214, 1994.

[6] J.R. Koza, Genetic Programming, MIT Press, Cambridge, MA, 1992.

[7] J.R. Koza and D. Andre, Parallel Genetic Programming on a Network of
Transputers, Computer Science Department, Stanford University, Technical Report
CS-TR-95-1542, 1995.

[8] C. Y. Lee, Representation of switching circuits by binary-decision programs, Bell
Syst. Tech. J., 38, 985-999, 1959.

[9] A. Loraschi, A. Tettamanzi, M. Tomassini and P. Verda, Distributed Genetic
Algorithms with an Application to Portfolio Selection Problems, in Proceedings of
the Int. Conf. on Artificial Neural Nets and Genetic Algorithms, D.W. Pearson, N.C.
Steele and R.F. Albrecht (Editors), Springer-Verlag, 384-387, 1995.

[10] P. Marchal and A. Stauffer, Binary decision diagram oriented FPGAs in
Proceedings of FPGA'94, 2nd International ACM/SIGDA Workshop on FPGAs,
Berkeley, Calif., Feb. 13-15, 1-10, 1994.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Second Edition, Berlin, 1994.

[12] B. M. E. Moret, Decision trees and diagrams, Computing Surveys 14, 593-623,
1982.

[13] J. Rose, A. El Gamal and A. Sangiovanni-Vincentelli, Architecture of PPGAs,
Proceedings of the IEEE, 81, 1013-1029, 1993.

[14] W.A. Tackett and A. Carmi, Simple Genetic Programming in C, available
through the genetic programming archive at ftp.io.com/pub/genetic-programming
/code/sgpc1.1.tar.Z.

[15] M. Tomassini, A Survey of Genetic Algorithms, to appear in Annual Reviews of
Computational Physics Vol. III, D. Stauffer Editor, World Scientific, 1996.

go to the summary

7 of 8 31/10/16 19:48

REFER TO CONTENTS

8 of 8 31/10/16 19:48

