Genetic Improvement of Programs

William B. Langdon
W.Langdon@cs.ucl.ac.uk
CREST, Department of Computer Science, University College London
Gower Street, London WCI1E 6BT, UK

Abstract— Genetic programming can optimise software, in-
cluding: evolving test benchmarks, generating hyper-heuristics
by searching meta-heuristics, generating communication proto-
cols, composing web services, generating improved hashing and
C++ heap managers, redundant programming and even auto-
matic bug fixing. Particularly in embedded real-time or mobile
systems, there may be many ways to trade off expenses (such
as time, memory, energy, power consumption) vs. functionality.
Human programmers cannot try them all. Also the best multi-
objective Pareto trade off may change with time, underlying
hardware and network connection or user behaviour. It may
be GP can automatically suggest different trade offs for each
new market. Recent results include substantial speed up by
evolving a new version of a program customised for a special
case.

I. INTRODUCTION

Genetic programing [Koza, 1992; Poli et al, 2008] has
been very widely applied. For example in modelling [Ko-
rdon, 2010], prediction [Langdon and Barrett, 2004; Pod-
gornik et al., 2011; Kovacic and Sarler, 2014], classifi-
cation [Freitas, 19971, design [Lohn and Hornby, 2006],
creating art [Reynolds, 2011; Jacob, 2001; Langdon, 2004;
Romero et al., 2013], the generation of hyper-heuristics
[Burke er al., 2013], Web mashups [Rodriguez-Mier et
al., 2010], Hashing [Hussain and Malliaris, 2000], Heap
managers [Risco-Martin et al., 2014], multiplicity comput-
ing [Cadar er al., 2010] and even to create benchmarks
which demonstrate the relative strengths and weaknesses of
optimisers [Langdon and Poli, ZOOSE

Recently genetic programming has been applied to the
production of programs itself, however so far relatively small
programs have been evolved. Nonetheless GP has had some
great successes when applied to existing programs. Perhaps
the best known work is that on automatic bug fixing [Arcuri
and Yao, 2008]. Particularly the Humie award winninﬁ work
of Westley Weimer and Stephanie Forrest [Forrest et al.,
2009]. This has received multiple awards and best paper
prizes [Weimer er al., 2009; Weimer et al., 2010]. GP has
been used repeatedly to automatically fix most (but not all)
real bugs in real programs [Le Goues er al., 2012]. Weimer
and Le Goues have now shown GP bug fixing to be effective
on several millions of lines of C++ programs. Once GP has

To accompany keynote at the 16" International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC 2014)

! Genetic programming bibliography |http://www.cs.bham.ac.uk/“wbl/biblio/
gives details of more than nine thousand articles, papers, books, etc.

2Human-competitive results presented at the annual GECCO conference
http://www.genetic-programming.org/combined.php

CUDA kernel on
graphics card

Instrumented gzip
(PC)

rovry

Module to be replaced

'y

Evolved module

Record data flows

Fig. 1. The original code is instrumented to record the inputs to the target
function (red) and the result it calculates every time it is called (blue arrows).
These become the fitness function and test suite for the automatically
evolved replacement module running on novel hardware (actually GPUs).
By inspection the CUDA code generated by GP is functionally identical to
the C code inside gzip. Also it has been demonstrated by running back-
to-back with the original code more than a million times [Langdon and
Harman, 2010].

been used to do the impossible it was improved [Kessentini
et al., 2011] and people felt brave enough to try other
techniques, e.g. [Nguyen et al., 2013].

Andrea Arcuri was again in at the start of inspirational
work on showing GP can create real code from scratch.
Although the programs remain small, David White, he and
John Clark [White er al., 2011] evolved programs to accom-
plish real tasks such as creating pseudo random numbers for
ultra tiny computers where they showed a trade off between
“randomness” and energy consumption.

II. AUTO PORTING FUNCTIONALITY

The Unix compression utility gzip was written in C in
the days of Digital Equipment Corp.’s mini-computers. It
is largely unchanged. However there is one procedure (of
about two pages of code) in it, which is so computationally
intensive that it has been re-written in assembler for the
Intel 86X architecture (i.e. Linux). The original C version is
retained and is distributed as part of Software-artifact Infras-
tructure Repository sir.unl.edu [Hutchins er al., 1994]. SIR
also contains a test suite for gzip. In Genetic Improvement, as
with Le Goues’ bug-fixing work, we start with an existing
program and a small number of test cases. In the case of
the gzip function, we showed genetic programming could
evolve a parallel implementation for an architecture not even
dreamt of when the original program was written [Langdon
and Harman, 2010]. Whereas Le Goues uses the original

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.cs.ucl.ac.uk/
http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.genetic-programming.org/combined.php
http://sir.unl.edu

program’s AST (Abstract Syntax Tree) to ensure that many
of the mutated programs produced by GP compile, we have
used a BNF grammar. In the case of [Langdon and Harman,
2010] the grammar was derived from generic code written
by the manufacture of the parallel hardware. Note that it
had nothing special to do with gzip. The original function
in gzip was instrumented to record its inputs and its outputs
each time it was called (see Figure [T). When gzip was run
on the SIR test suite, this generated more than a million
test cases, however only a few thousand were used by the
Glﬂ Essentially GP was told to create parallel code from the
BNF grammar which when given a small number of example
inputs returned the same answers. The resulting parallel code
is functionally the same as the old gzip code.

I1I. BOwWTIE2SF IMPROVING 50 000 LINES OF C++

As Figure [2] shows, genetic programming produces popu-
lations of programs which may have different abilities on
different scales. While Figure [2| shows speed versus quality,
other tradeoffs have been investigated. For example it may
be impossible to simultaneously minimise execution time,
memory foot print and energy consumption. Yet, convention-
ally human written programs choose one trade-off between
multiple objectives and it becomes infeasible to operate
the program with another trade-off. For example, consider
approximate string matching.

Finding the best match between (noisy) strings is the
life blood of Bioinformatics. Huge amounts of people’s
time and computing resources are devoted every day to
matching protein amino acid sequences against databases
of known proteins from all forms of life. The acknowledge
gold standard is the BLAST program [Altschul et al., 1997]

3Later work used even fewer tests.

Speed up on GPU
(6]
T

0 0.5 1 15 2 25
Error per pixel

Fig. 2. Example of automatically generated Pareto tradeoff front. Genetic
programming used to improve 2D Stereo Camera code [Stam, 2008] for
modern nVidia GPU [Langdon and Harman, 2014]. Left (above 0) many
programs are faster than the original code written by nVidia’s image
processing expert (human) and give exactly the same answers. Many other
automatically generated programs are also faster but give different answers.
Some (cf. dotted blue line) are faster than the best zero error program.

which incorporate heuristics of known evolutionary rates
of change. It is available via the web and can lookup a
protein in every species which has been sequences in a few
minutes. Even before the sequencing of the human genome,
the volume of DNA sequences was exploding exploding at a
rate like Moore’s Law [Moore, 1965]. With modern NextGen
sequencing machines throwing out 100s of millions (even
billions) of (albeit very noisy) DNA base-pair sequences,
there is no way that BLAST can be used to process this
volume of data. This has lead to human written look up tools
for matching NextGen sequences against the human genome.
Wikipedia list more than 140 programs (written by some of
the brightest people on the planet) which do some form of
Bioinformatics string matching.

The authors of all this software are in a quandary. For their
code to be useful the authors have to chose a point in the
space of tradeoffs between speed, machine resources, quality
of solution and functionality, which will: 1) be important to
the Bioinformatics community and 2) not be immediately
dominated by other programs. In practise they have to choose
a target point when they start as once basic design choices
(e.g. target data sources and computer resources) have been
made, few people or even research teams have the resources
to discard what they have written and start totally from
scratch. Potentially genetic programming offers them a way
of exploring this space of tradeoffs [Harman et al., 2012].
GP produce many programs across the trade-off space and so
can potentially say “look here is a trade-off which you had
not considered”. This could be very useful to the human,
even if they refuse to accept machine generated code and
insist on coding the solution themselves.

We have made a start by showing GP can transform human
written DNA sequence matching code, moving it from one
tradeoff point to another. In our example, the new program is
specialised to a particular data source and sequence problem
for which it is on average more than 70 times faster. Indeed
on this particular problem, we were fortunate that not only
is the variant faster but indeed it gives a slight quality
improvement on average [Langdon and Harman,].

IV. IMPROVING PARALLEL PROCESSING CUDA CODE
WRITTEN BY EXPERTS

In other examples we returned to computer graphics hard-
ware. In the first GP was able to automatically update for
today’s GPUs software written specifically by nVidia’s image
processing expert to show off the early generations of their
graphics cards [Stam, 2008]. Genetic improvement lead (on
the most powerful modern Tesla GPU) to almost a seven
fold speed up relative to the original code on the same GPU.
In another example a combination of manual and automated
changes to production 3D medical image processing code
lead to the creation of a version of a performance critical
kernel which (on a Tesla K20c) is more than 2000 times
faster than the production code running on an 2.67GHz CPU.

V. MINISAT: IMPROVING BOOLEAN SATISFIABILITY
CODE WRITTEN BY EXPERTS

The basic GI technique has also been used to create an
improved version of C++ code from multiple versions of a
program written by different authors. Boolean Satisfiability
is a problem which appears often. MiniSAT is a popular SAT
solver. The satisfiability community has advanced rapidly
since the turn of the century. This has been due in part
to a series of competitions. These include the “MiniSAT
hack track”, which is specifically designed to encourage
humans to make small changes to the MiniSAT code. The
new code is available after each competition. MiniSAT and
a number of human variants were given to GI and it was
asked to evolve a new variant specifically designed to work
better on a software engineering problem (interaction testing)
[Petke et al., 2014b]. At GECCO 2014 it received a Human
Competitive award (HUMIE) [Petke et al., 2014al.

VI. BABEL PIDGIN: CREATING AND INCORPORATING
NEW FUNCTIONALITY

Another prize winning genetic programing based technique
has recently been demonstrated to be able to extend the
functionality of existing code [Harman er al., 2014]. GP,
including human hints, was able to evolved new functionality
externally and then search based techniques [Harman, 2011]
were used to graft the new code into an existing program
(pidgin) of more than 200000 lines of C++.

REFERENCES

[Altschul ef al., 1997] Stephen F. Altschul, Thomas L. Madden, Alejan-
dro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J.
Lipman. Gapped BLAST and PSI-BLAST a new generation of protein
database search programs. Nucleic Acids Research, 25(17):3389-3402,
1997.

[Arcuri and Yao, 2008] Andrea Arcuri and Xin Yao. A novel co-
evolutionary approach to automatic software bug fixing. In Jun Wang,
editor, 2008 IEEE World Congress on Computational Intelligence, pages
162-168, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence
Society, IEEE Press.

[Burke et al., 2013] Edmund K Burke, Michel Gendreau, Matthew Hyde,
Graham Kendall, Gabriela Ochoa, Ender Ozcan, and Rong Qu. Hyper-
heuristics: a survey of the state of the art. Journal of the Operational
Research Society, 64(12):1695-1724, December 2013.

[Cadar et al., 2010] Cristian Cadar, Peter Pietzuch, and Alexander L. Wolf.
Multiplicity computing: a vision of software engineering for next-
generation computing platform applications. In Kevin Sullivan, editor,
Proceedings of the FSE/SDP workshop on Future of software engineering
research, FOSER 10, pages 81-86, Santa Fe, New Mexico, USA, 7-11
November 2010. ACM.

[Forrest et al., 2009] Stephanie Forrest, ThanhVu Nguyen, Westley
Weimer, and Claire Le Goues. A genetic programming approach to
automated software repair. In Guenther Raidl, Franz Rothlauf, Giovanni
Squillero, Rolf Drechsler, Thomas Stuetzle, Mauro Birattari, Clare Bates
Congdon, Martin Middendorf, Christian Blum, Carlos Cotta, Peter
Bosman, Joern Grahl, Joshua Knowles, David Corne, Hans-Georg
Beyer, Ken Stanley, Julian F. Miller, Jano van Hemert, Tom Lenaerts,
Marc Ebner, Jaume Bacardit, Michael O’Neill, Massimiliano Di Penta,
Benjamin Doerr, Thomas Jansen, Riccardo Poli, and Enrique Alba,
editors, GECCO ’09: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pages 947-954, Montreal, 8-12
July 2009. ACM. Best paper.

[Freitas, 1997] Alex A. Freitas.| A genetic programming framework for
two data mining tasks: Classification and generalized rule induction. In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 96-101,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Harman er al., 2012] Mark Harman, William B. Langdon, Yue lia,
David R. White, Andrea Arcuri, and/ John A. Clark. The GISMOE
challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs. In The 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 12), pages 1-14,
Essen, Germany, September 3-7 2012. ACM.

[Harman et al., 2014] Mark Harman, Yue Jia, and William B. Langdon.
Babel pidgin: SBSE can grow and graft entirely new functionality into a
real world system. In Claire Le Goues and Shin Yoo, editors, Proceedings
of the 6th International Symposium, on Search-Based Software Engi-
neering, SSBSE 2014, volume 8636 of LNCS, pages 247-252, Fortaleza,
Brazil, 26-29 August 2014. Springer. Winner SSBSE 2014 Challange
Track.

[Harman, 2011] Mark Harman. Software engineering meets evolutionary
computation. Computer, 44(10):31-39, October 2011. Cover feature.
[Hussain and Malliaris, 2000] Daniar Hussain and Steven Malliaris. Evolu-
tionary techniques applied to hashing: An efficient data retrieval method.
In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian
Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), page 760, Las

Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

[Hutchins et al., 1994] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and control-flow-based test
adequacy criteria. In Proceedings of 16th International Conference on
Software Engineering, ICSE-16, pages 191-200, May 1994.

[Jacob, 2001] |Christian Jacob. Illustrating Evolutionary Computation with
Mathematica. Morgan Kaufmann, 2001.

[Kessentini et al., 2011] Marouane Kessentini, Wael Kessentini, Houari
Sahraoui, Mounir Boukadoum, and Ali Ouni. Design defects detection
and correction by example. In /9th IEEE International Conference on
Program Comprehension (ICPC 2011), pages 81-90, Kingston, Canada,
22-24 June 2011.

[Kordon, 2010] Arthur K. Kordon. Applying Computational Intelligence
How to Create Value. Springer, 2010.

[Kovacic and Sarler, 2014] Miha Kovacic and Bozidar Sarler, Genetic
programming prediction of the natural gas consumption in a steel plant.
Energy, 66(1):273-284, 1 March 2014.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT press, 1992.

[Langdon and Barrett, 2004] 'W. B. Langdon and S. J. Barrett. Genetic
programming in data mining for drug discovery. In Ashish Ghosh
and Lakhmi C. Jain, editors, Evolutionary Computing in Data Mining,
volume 163 of Studies in Fuzziness and Soft Computing, chapter 10,
pages 211-235. Springer, 2004.

[Langdon and Harman,] William B. Langdon and Mark Harman. Opti-
mising existing software with genetic programming. /EEE Transactions
on Evolutionary Computation. Accepted.

[Langdon and Harman, 2010] 'W. B. Langdon and M. Harman.| Evolving a
CUDA kernel from an nVidia template. In Pilar Sobrevilla, editor, 2010
IEEE World Congress on Computational Intelligence, pages 2376-2383,
Barcelona, 18-23 July 2010. IEEE.

[Langdon and Harman, 2014] William B. Langdon and Mark Harman.
Genetically improved CUDA C++ software. In M. Nicolau, K. Krawiec,
M. 1. Heywood, M. Castelli, P. Garci-Sanchez, J. J. Merelo, V. M. R.
Santos, and K. Sim, editors, 17th European Conference on Genetic
Programming, volume 8599 of LNCS, pages 87-99, Granada, Spain, 23-
25 April 2014. Springer.

[Langdon and Poli, 2005] William B. Langdon and Riccardo Poli.| Evolv-
ing problems to learn about particle swarm and other optimisers. In David
Corne, Zbigniew Michalewicz, Marco Dorigo, Gusz Eiben, David Fogel,
Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther Raidl,
Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan J. Merelo
Guervos, Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh
Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoenauer, editors,
Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
volume 1, pages 81-88, Edinburgh, UK, 2-5 September 2005. IEEE
Press.

[Langdon, 20041 'W. B. Langdon. Global distributed evolution of L-
systems fractals. In Maarten Keijzer, Una-May O’Reilly, Simon M.

http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://dx.doi.org/10.1145/1882362.1882380
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Freitas_1997_GPf2dm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2011_ieeeC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html
http://dx.doi.org/10.1109/ICSE.1994.296778
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jacob_2001_iecm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kordon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kovacic_2014_energy.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_ECDM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2005_CECb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_EuroGP.html

Lucas, Ernesto Costa, and Terence Soule, editors, Genetic Programming,
Proceedings of EuroGP’2004, volume 3003 of LNCS, pages 349-358,
Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

[Le Goues et al., 2012] Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest, and Westley Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each. In Martin Glinz, editor,
34th International Conference on Software Engineering (ICSE 2012),
pages 3—13, Zurich, June 2-9 2012.

[Lohn and Hornby, 2006] Jason D. Lohn and Gregory S. Hornby.| Evolv-
able hardware using evolutionary computation to design and optimize
hardware systems. IEEE Computational Intelligence Magazine, 1(1):19—
27, February 2006.

[Moore, 1965] Gordon E. Moore. Cramming more components onto
integrated circuits. Electronics, 38(8):114—117, April 19 1965.

[Nguyen et al., 2013] Hoang Duong Thien Nguyen, Dawei Qi, Abhik
Roychoudhury, and Satish Chandra. SemFix: program repair via semantic
analysis. In Betty H. C. Cheng and Klaus Pohl, editors, 35th International
Conference on Software Engineering (ICSE 2013), pages 772-781, San
Francisco, USA, May 18-26 2013. IEEE.

[Petke et al., 2014a] Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer.| Using genetic improvement & code transplants
to specialise a C++ program to a problem class. 11th Annual Humies
Awards 2014, 14 July 2014. Winner Silver.

[Petke et al., 2014b] Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer. Using genetic improvement and code transplants to
specialise a C++ program to a problem class. In M. Nicolau, K. Krawiec,
M. I. Heywood, M. Castelli, P. Garci-Sanchez, J. J. Merelo, V. M. R.
Santos, and K. Sim, editors, /7th European Conference on Genetic
Programming, volume 8599 of LNCS, pages 137-149, Granada, Spain,
23-25 April 2014. Springer.

[Podgornik et al., 20111 Bojan Podgornik, Vojteh Leskovsek, Miha Ko-
vacic, and Josef Vizintin. Analysis and prediction of residual stresses
in nitrided tool steel. Materials Science Forum, 681, Residual Stresses
VIII:352-357, March 2011.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and
Nicholas Freitag McPhee.| A field guide to genetic programming.
Published via http://lulu.com and freely available at
http://www.gp—-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[Reynolds, 2011] Craig Reynolds. Interactive evolution of camouflage.
Artificial Life, 17(2):123-136, Spring 2011.

[Risco-Martin et al., 2014] Jose L. Risco-Martin, J. Manuel Colmenar,
J. Ignacio Hidalgo, Juan Lanchares,/ and Josefa Diaz. A methodology to
automatically optimize dynamic memory managers applying grammatical
evolution. Journal of Systems and Software, 91:109-123, 2014.

[Rodriguez-Mier et al., 2010] Pablo Rodriguez-Mier, Manuel Mucientes,
Manuel Lama, and Miguel I. Couto., Composition of web services
through genetic programming. Evolutionary Intelligence, 3(3-4):171—
186, 2010.

[Romero et al., 2013] Juan Romero, Penousal Machado, and Adrian Car-
ballal.| Guest editorial: special issue on biologically inspired music,
sound, art and design. Genetic Programming and Evolvable Machines,
14(3):281-286, September 2013. Special issue on biologically inspired
music, sound, art and design.

[Stam, 2008] Joe Stam. Stereo imaging with CUDA. Technical report,
nVidia, V 0.2 3 Jan 2008.

[Weimer et al., 2009] Westley Weimer, ThanhVu Nguyen, Claire Le
Goues, and Stephanie Forrest., Automatically finding patches using ge-
netic programming. In Stephen Fickas, editor, International Conference
on Software Engineering (ICSE) 2009, pages 364-374, Vancouver, May
16-24 2009.

[Weimer et al., 2010] Westley Weimer, Stephanie Forrest, Claire Le Goues,
and ThanhVu Nguyen.| Automatic program repair with evolutionary
computation. Communications of the ACM, 53(5):109-116, June 2010.

[White et al., 2011] David R. White, Andrea Arcuri, and John A. Clark.
Evolutionary improvement of programs. IEEE Transactions on Evolu-
tionary Computation, 15(4):515-538, August 2011.

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lohn_2006_iCIm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Podgornik_2011_MSF.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Podgornik_2011_MSF.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.lulu.com/shop/riccardo-poli-and-william-b-langdon-and-nicholas-freitag-mcphee/a-field-guide-to-genetic-programming/ebook/product-17447670.html
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Reynolds_2011_ALife.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin_2014_JSS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin_2014_JSS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Romero_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Romero_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html

	Introduction
	Auto Porting Functionality
	Bowtie2GP Improving 50000 lines of C++
	Improving Parallel Processing CUDA Code Written by Experts
	MiniSAT: Improving Boolean Satisfiability Code Written by Experts
	Babel Pidgin: Creating and Incorporating New Functionality
	References

